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Introduction

Let X = R
n be the model space and Y = R

p the

observation space. Our aim is to produce an analysis

estimate xa ∈ X of the true state xt ∈ X of a system,

given a background estimate xb ∈ X and observations

yo ∈ Y about the true state. We assume that xb is

evolved from time ti−1 to time ti through the forecast

model

xb(ti) = Mi−1[x
a(ti−1)],

where Mi−1 : X → X is the (nonlinear) model

operator, whereas the observations yo are generated

by the observation model

yo = H(xt)+ εo,

where H : X → Y is the (nonlinear) observation

operator and εo the observation error.

We consider that the background, the analysis and the

observations contain zero-mean normally distributed

errors:

εb = xb−xt, εa = xa−xt, εo = yo−H(xt).

Their respective covariance matrices are defined as

B = E{εbεT
b }, Pa = E{εaεT

a }, R = E{εoεT
o }.

Moreover, we assume that the errors in the

background and the observations are uncorrelated,

i.e., E{εoεT
b }= 0.

3D-Var

In 3D-Var we seek the optimal analysis xa that

minimizes the cost function of the state x:

J(x) =
1

2
(x−xb)TB−1(x−xb)

+
1

2
[yo−H(x)]T R−1 [yo−H(x)] ,

which measures the distance between x and the

background xb, weighted by the inverse of the

background error covariance B, plus the distance

between x and the observations yo, weighted by the

inverse of the observation error covariance R.

The minimum of the functional is attained when its

gradient is equal to zero. The gradient of J(x) with

respect to (x−xb) is

∇J(x) = B−1(x−xb)+HTR−1H(x−xb)

−HTR−1[yo−H(xb)],

where H is the matrix of the first-order partial

derivatives of the nonlinear operator H, i.e., its

elements are hi j = ∂Hi/∂x j. Taking ∇J(xa) = 0 and

solving for xa, yields the 3D-Var analysis

xa = xb+W[yo−H(xb)],

W = [B−1+HTR−1H]−1HTR−1,

where W is the optimal weight matrix, in the sense

that it minimizes the analysis error variance.

Formally, this is the solution of the 3D-Var

minimization problem. In practice, the minimization

of the cost function is carried out using iterative

minimization algorithms, such as the Conjugate

Gradient or quasi-Newton methods.

In Figures 1 and 2, there are presented results

of the 3D-Var assimilation implementation for the

Lorenz-96 model.

The Lorenz-96 Model

The Lorenz-96 is a system of N ordinary differential

equations:

dXi

dt
= (Xi+1−Xi−2)Xi−1−Xi+F, i = 1, . . . ,N,

with cyclic boundary conditions X−1 = XN−1, X0 =

XN, XN+1 = X1 and constant forcing term F .

We have considered N = 40 and F = 8 for which

the system exhibits chaotic behavior. Furthermore,

as initial condition we have assumed the steady

state solution Xi = F, ∀ i = 1, . . . ,N, with a small

perturbation introduced in X20 = F + 0.008. A

fourth-order Runge-Kutta scheme with time-step

∆t = 0.05 has been used for the numerical integration.
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Figure 1: 3D-Var assimilation for the Lorenz-96

model. The background error covariance is a

diagonal matrix, localized around the last 20 sites.

Observations are available at each site, with an

error εo ∼ N(0,σ 2
o ), σo = 0.20 and assimilation is

performed every 50 integration steps. We display the

first four components of the analysis (black dashed

line) and the true state (green solid line), as well as

the available observations (red dots).
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Figure 2: Upper left plot shows the analysis estimate,

the true state and the observations, during the

last assimilation step. Upper right plot shows

the absolute analysis error against the observation

locations. Bottom plot shows the evolution in time

of the analysis RMSE. The average RMSE is 4.5171.

Ensemble Square Root Filter

EnSRF is a deterministic Ensemble Kalman Filter

(EnKF). It is a recursive algorithm for estimating the

true state of a dynamical system from a set of noisy

observations and consists of the forecast and the

analysis step. EnSRF provides the optimal analysis

estimate of the true state and also its uncertainty.

We begin with an ensemble of K members at time ti−1

{xa
k ∈ X , k = 1, . . . ,K}. Using the model we obtain K

forecasts at time ti:

x
f

k(ti) = Mi−1[x
a
k(ti−1)], k = 1, . . . ,K.

We define the forecast ensemble perturbations matrix

X f =
1√

K −1

K

∑
k=1

(

x
f

k −x f
)

, where x f =
1

K

K

∑
k=1

x
f

k

is the forecast ensemble mean. Then, we form the

forecast error covariance matrix P f = X f (X f )T .

A set of observations yo becomes available and we

proceed to the analysis step. We first compute the

Kalman Gain matrix

K = X f (X f )T HT
[

R+H X f (X f )THT
]−1

and then, the analysis ensemble mean is given as

xa = x f +K[yo−H(x f )].

The analysis error covariance matrix, which is

defined as Pa = [I−KH]P f , can be written in the

form

Pa = X f T(X f )T ,

where T is a Hermitian, positive-definite matrix.

Then, the analysis ensemble perturbations matrix is

calculated as Xa = X f S, where S is the square root

matrix of T. Finally, adding to Xa the analysis

ensemble mean xa, we obtain the desired analysis

ensemble.

After completing the analysis step at time ti, we

use the calculated analysis to update the forecast

ensemble at the next time-step ti+1.
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Figure 3: EnSRF results for the Lorenz-96 model.

We use an ensemble of 40 members. Observations

are available at each site, with an error εo ∼
N(0,σ 2

o ), σo = 0.20. Assimilation is performed every

50 integration steps. As soon as an observation (red

dot) becomes available, the ensemble (black lines) is

adjusted to fit the data. The ensemble mean (magenta

line) is the analysis estimate of the true state (green

line).
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Figure 4: EnSRF analysis RMSE. After the

assimilation of each observation, there is a significant

reduction of the analysis RMSE. The average RMSE

is 2.6344.
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