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Περίληψη

Μέθοδοι αφομοίωσης δεδομένων (Data assimilation methods) έχουν χρησιμοποιηθεί εκτενώς τις
περασμένες δεκαετίες σε επιστήμες όπως για παράδειγμα τη μετεωρολογία, την υδρολογία και την

ωκεανογραφία. Γενικά, η αφομοίωση δεδομένων είναι μία τεχνική η οποία συνδυάζει προηγούμενη

γνώση ενός συστήματος, υπό τη μορφή ενός αριθμητικού μοντέλου, με νέα πληροφορία για την

κατάσταση του συστήματος, υπό την μορφή παρατηρήσεων. Οι μέθοδοι αυτές χωρίζονται σε δύο

μεγάλες κατηγορίες, ονομαστικά, τις μεταβολικές (variational) και τις ακολουθιακές (sequential).

Οι μεταβολικές μέθοδοι βασίζονται στην θεωρία βέλτιστου ελέγχου και σκοπός σε αυτές είναι

η ελαχιστοποίηση ενός συναρτησιακού που μετράει την απόσταση των δεδομένων από το μον-

τέλο. Από την άλλη πλευρά, το κύριο χαρακτηριστικό των ακολουθιακών μεθόδων είναι ότι οι

παρατηρήσεις αφομοιώνονται αμέσως μόλις γίνονται διαθέσιμες. Στην παρούσα εργασία μελετάμε

και παρουσιάζουμε δύο μεθόδους αφομοίωσης δεδομένων από κάθε κατηγορία. Από την οικογένεια

των μεταβολικών μεθόδων μελετάμε τη Μεταβολική Αφομοίωση Δεδομένων στις Τρεις Διαστά-

σεις (Three-dimensional Variational Assimilation ή 3D-Var) και τη Μεταβολική Αφομοίωση
Δεδομένων στις Τέσσερις Διαστάσεις (Four-dimensional Variational Assimilation ή 4D-Var).
Η πιο διαδεδομένη μέθοδος στη δεύτερη κατηγορία, είναι το Φίλτρο Kalman (Kalman Filter).
Μελετάμε δύο εκδοχές του φίλτρου Kalman, ονομαστικά, το Extended Kalman Filter και το En-
semble Kalman Filter .

Στην εργασία αυτή, μελετάμε την εφαρμογή των παραπανω μεθόδων αφομοίωσης δεδομένων στην

αριθμητική πρόβλεψη του καιρού (numerical weather prediction). Σε αυτό το πλαίσιο, η αφο-
μοίωση δεδομένων χρησιμοποιείται για την ανάλυση της τρέχουσας κατάστασης της ατμόσφαιρας,

ώστε να καθοριστούν οι κατάλληλες αρχικές συνθήκες που θα χρειαστούν για τη βελτίωση μίας

μεταγενέστερης αριθμητικής πρόγνωσης του καιρού. Θεωρούμε λοιπόν το μη-γραμμικό δυναμικό

σύστημα του Lorenz (Lorenz 1996) και παρουσιάζουμε αποτελέσματα της υλοποίησης των 3D-Var
και Ensemble Kalman Filter σε αυτό.

Παρουσιάζουμε επίσης, το Weather Research and Forecasting (WRF) model το οποίο αποτελεί
ένα από τα πιο προηγμένα μοντέλα αριθμητικής πρόβλεψης του καιρού και είναι ένα ελεύθερο λο-

γισμικό που χρησιμοποιείται τόσο για ερευνητικούς, όσο και για επιχειρησιακούς σκοπούς. Εστιά-

ζουμε στο πακέτοWRFDA που είναι ενσωματωμένο σε αυτό, και παρέχει δυνατότητες αφομοίωσης
μετεωρολογικών δεδομένων και συγκεκριμένα, περιλαμβάνει την υλοποίηση των 3D-Var και 4D-Var,
καθώς και μία υβριδική μέθοδο που συνδυάζει τις μεταβολικές και ακολουθιακές μεθόδους.
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Abstract

Data Assimilation (DA) methods have been extensively used the past decades in many fields of
science, among which meteorology, hydrology and oceanography, to mention just a few. Gener-
ally speaking, data assimilation is a technique to combine past knowledge of the system, in the
form of a numerical model, and information about the system’s state, in the form of observa-
tions. Two main categories of DA methods can be recognized, variational and sequential.

Variational methods are based on optimal control theory and the aim is to minimize a given cost
function that measures the model-to-data misfit. In sequential methods, on the other hand, ob-
servations are assimilated as soon as they become available. In this thesis we study and present
two methods from each family. The Three-Dimensional Variational assimilation (3D-Var) and
the Four-Dimensional Variational assimilation methods (4D-Var) fall into the first category.
The most well-known DA method in the sequential family is the Kalman Filtering, and we
focus on two of its variants, the Extended and the Ensemble Kalman Filtering.

The methods presented in our work are viewed under the prism of numerical weather predic-
tion. In this context, data assimilation is used to produce an analysis of the current state of the
atmosphere to be used as initial conditions in a subsequent weather forecast, leading to more
accurate predictions. We provide implementations and numerical results for the 3D-Var and
Ensemble Kalman Filtering methods applied to the Lorenz-96 model.

In the frame of weather forecasting, we also present the Weather Research and Forecasting
(WRF) model which is a state-of-the-art atmospheric modeling system designed for numerical
weather prediction and is currently being used in operational centers. We focus on the WRF
Data Assimilation (WRFDA) module that includes implementations for the 3D-Var and 4D-
Var methods, as well as a hybrid scheme between the variational and ensemble assimilation
methods.

iv



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1
1.1 Data Assimilation for NWP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The Lorenz-96 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Data Assimilation Techniques 9
2.1 Optimal Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Three-Dimensional Variational Assimilation . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Application to the Lorenz-96 model . . . . . . . . . . . . . . . . . . . . . 21
2.3 Four-Dimensional Variational Assimilation . . . . . . . . . . . . . . . . . . . . . . 30

3 Kalman Filtering 33
3.1 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Ensemble Kalman Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Application to the Lorenz-96 model . . . . . . . . . . . . . . . . . . . . . 38
3.2.1.1 Case study I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1.2 Case study II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.1.3 Case study III . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Weather Research and Forecasting Model 48
4.1 WRF Data Assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Background Error Covariance Estimates . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 4DVar on WRFDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Hybrid Variational-Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Appendix 60
5.1 3D-Var for the Lorenz-96 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Using the matrix B6h1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.2 Using the matrix Bloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 EnSRF for the Lorenz-96 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.1 Case study I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 Case study II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.3 Case study III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography 77

v



Abbreviations

BLUE Best Linear Unbiased Estimate
DA Data Assimilation
EnKF Ensemble Kalman Filter
EnSRF Ensemble Square Root Filter
EKF Extended Kalman Filter
KF Kalman Filter
MM5 NCAR Mesoscale Model modeling system
MSE Mean Square Error
NCAR National Center for Atmospheric Research
NCEP National Centers for Environmental Prediction
NOAA National Oceanic and Atmospheric Administration
NWP Numerical Weather Prediction
OI Optimal Interpolation
RMSE Root Mean Square Error
TLM Tangent Linear Model
WRF Weather Research and Forecasting Model
WRF-ARW Advanced Research WRF
WRFDA Data Assimilation Module of the WRF-Model
3D-Var Three-Dimensional Variational Analysis
4D-Var Four-Dimensional Variational Analysis

vi



List of Symbols

Symbol Description

B background error covariance matrix
d innovation or observational increments vector
E{·} expected value
F forcing term
H nonlinear observation operator
H linear observation operator matrix
I identity matrix
J cost function
K Kalman gain matrix
L TLM matrix of the model operator M
L likelihood function
` additive covariance inflation factor
M nonlinear model operator
p probability, distribution function
Pa analysis error covariance matrix

Pf forecast error covariance matrix
Q forecast model error covariance
R observations error covariance matrix
T temperature
W optimal weight
W weight matrix
x model state vector
X model space
xa analysis state
xa analysis ensemble mean
Xa analysis ensemble perturbations matrix
xb background field or “first guess”
xf forecast state
xf forecast or background ensemble mean

Xf forecast or background ensemble perturbations matrix
xt true model state
Y observation space
yo observation vector
yf forecast or background ensemble observation mean

Yf forecast or background ensemble observation perturbations
γ multiplicative covariance inflation factor
εa analysis error
εb background error
εf forecast error
εo observational error
σ standard deviation
σ2 variance

vii



List of Figures

2.1 Structure of the Background Error Covariance Matrix B6h1. . . . . . . . . . . . 21
2.2 3D-Var for the Lorenz-96 model with observation network 1, σo = 0.20 and

assimilation performed at each time step. . . . . . . . . . . . . . . . . . . . . . . 22
2.3 3D-Var for the Lorenz-96 model with observation network 1 and σo = 0.20. The

average analysis RMSE is 1.3412. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 3D-Var for the Lorenz-96 model with observation network 2, σo = 0.20 and

assimilation performed at each time step. . . . . . . . . . . . . . . . . . . . . . . 23
2.5 3D-Var for the Lorenz-96 model with observation network 2 and σo = 0.20. The

average analysis RMSE is 4.0211. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 3D-Var for the Lorenz-96 model with observation network 1, σo = 0.20 and

assimilation performed every 5 integration steps. . . . . . . . . . . . . . . . . . . 24
2.7 3D-Var for the Lorenz-96 model with observation network 1 and σo = 0.20. The

average analysis RMSE is 4.1616. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 3D-Var for the Lorenz-96 model with observation network 2, σo = 0.20 and

assimilation performed every 5 integration steps. . . . . . . . . . . . . . . . . . . 25
2.9 3D-Var for the Lorenz-96 model with observation network 2 and σo = 0.20. The

average analysis RMSE is 4.7868. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.10 Structure of the Background Error Covariance Matrix Bloc. . . . . . . . . . . . . 26
2.11 3D-Var for the Lorenz-96 model with observation network 1, σo = 0.20 and

assimilation performed at each time step. . . . . . . . . . . . . . . . . . . . . . . 26
2.12 3D-Var for the Lorenz-96 model with observation network 1 and σo = 0.20. The

average analysis RMSE is 0.2257. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.13 3D-Var for the Lorenz-96 model with observation network 2, σo = 0.20 and

assimilation performed at each time step. . . . . . . . . . . . . . . . . . . . . . . 27
2.14 3D-Var for the Lorenz-96 model with observation network 2 and σo = 0.20. The

average analysis RMSE is 1.5791. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.15 3D-Var for the Lorenz-96 model with observation network 1, σo = 0.20 and

assimilation performed every 5 integration steps. . . . . . . . . . . . . . . . . . . 28
2.16 3D-Var for the Lorenz-96 model with observation network 1 and σo = 0.20. The

average analysis RMSE is 2.7451. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.17 3D-Var for the Lorenz-96 model with observation network 2, σo = 0.20 and

assimilation performed every 5 integration steps. . . . . . . . . . . . . . . . . . . 29
2.18 3D-Var for the Lorenz-96 model with observation network 2 and σo = 0.20. The

average analysis RMSE is 3.5467. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 No-assimilation run (integration in time) of the Lorenz-96 model. . . . . . . . . . 39

viii



3.2 A single EnSRF analysis step. The truth state (green line) and the ensemble
members (black lines) are propagated in time from the same initial condition. As
soon as the observation (red dot) becomes available, the ensemble is adjusted to
fit the data and give a better estimate of the true state. . . . . . . . . . . . . . . 39

3.3 Four EnSRF cycles have been completed with 50 intermediate integration steps
between the assimilations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 EnSRF for the Lorenz-96 with K = 10, observation network 1 and σo = 0.20. . . 40
3.5 EnSRF analysis RMSE results for K = 10, observation network 1 and σo = 0.20.

The mean value of the RMSE is 3.7362. . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 EnSRF for the Lorenz-96 with K = 40, observation network 1 and σo = 0.20. . . 41
3.7 EnSRF analysis RMSE results for K = 40, observation network 1 and σo = 0.20.

The mean value of the RMSE is 2.1170. . . . . . . . . . . . . . . . . . . . . . . . 42
3.8 EnSRF for the Lorenz-96 with K = 40, observation network 1, σo = 0.20, infla-

tion factors γ = 1.2 and ` = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.9 EnSRF analysis RMSE results for K = 40, observation network 1, σo = 0.20 and

inflation factors γ = 1.2 and ` = 0.05. The mean value of the RMSE is 1.5941. . 43
3.10 EnSRF for the Lorenz-96 with K = 40, observation network 1, σo = 0.20 and

forecast model with forcing term F = 8.2. . . . . . . . . . . . . . . . . . . . . . . 44
3.11 EnSRF for the Lorenz-96 with K = 40, observation network 1, σo = 0.20, as-

suming a forecast model with forcing term F = 8.2 and inflation factors γ = 1.2
and ` = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.12 EnSRF analysis RMSE results for K = 40, observation network 1, σo = 0.20,
assuming a forecast model with forcing term F = 8.2. In the left plot we do not
use inflation, while in the right plot the inflation factors are γ = 1.2 and ` = 0.05. 45

3.13 EnSRF for the Lorenz-96 with K = 40, observation network 2 and σo = 0.20. . . 45
3.14 EnSRF for the Lorenz-96 with K = 40, observation network 2 and σo = 0.20.

Evolution in time of the 13th and 26th components, which are observed and
unobserved respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.15 EnSRF analysis RMSE results for K = 40, observation network 2 and σo = 0.20.
The mean value of the RMSE is 3.2396. . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Sketch showing the relationship between the components of WRFDA and the
rest of the WRF system. Source: This diagram has been taken from the original
WRFDA documentation [32]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Data flow and program structure of WRF 4DVar. Source: This diagram has been
taken from [15], which is the main reference used for the description of WRF 4DVar. 56

5.1 3D-Var for the Lorenz-96 model with observation network 1, σo = 0.50 and
assimilation performed at each time step. . . . . . . . . . . . . . . . . . . . . . . 61

5.2 3D-Var for the Lorenz-96 model with observation network 1 and σo = 0.50. The
average analysis RMSE is 4.4403. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 3D-Var for the Lorenz-96 model with observation network 2, σo = 0.50 and
assimilation performed at each time step. . . . . . . . . . . . . . . . . . . . . . . 62

5.4 3D-Var for the Lorenz-96 model with observation network 2 and σo = 0.50. The
average analysis RMSE is 4.3193. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 3D-Var for the Lorenz-96 model with observation network 1, σo = 0.50 and
assimilation performed every 5 integration steps. . . . . . . . . . . . . . . . . . . 63

5.6 3D-Var for the Lorenz-96 model with observation network 1 and σo = 0.50. The
average analysis RMSE is 5.1105. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ix



5.7 3D-Var for the Lorenz-96 model with observation network 2, σo = 0.50 and
assimilation performed every 5 integration steps. . . . . . . . . . . . . . . . . . . 64

5.8 3D-Var for the Lorenz-96 model with observation network 2 and σo = 0.50. The
average analysis RMSE is 4.8730. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.9 3D-Var for the Lorenz-96 model with observation network 1, σo = 0.50 and
assimilation performed at each time step. . . . . . . . . . . . . . . . . . . . . . . 65

5.10 3D-Var for the Lorenz-96 model with observation network 1 and σo = 0.50. The
average analysis RMSE is 1.6891. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.11 3D-Var for the Lorenz-96 model with observation network 2, σo = 0.50 and
assimilation performed at each time step. . . . . . . . . . . . . . . . . . . . . . . 66

5.12 3D-Var for the Lorenz-96 model with observation network 2 and σo = 0.50. The
average analysis RMSE is 3.3563. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.13 3D-Var for the Lorenz-96 model with observation network 1, σo = 0.50 and
assimilation performed every 5 integration steps. . . . . . . . . . . . . . . . . . . 67

5.14 3D-Var for the Lorenz-96 model with observation network 1 and σo = 0.50. The
average analysis RMSE is 3.9178. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.15 3D-Var for the Lorenz-96 model with observation network 2, σo = 0.50 and
assimilation performed every 5 integration steps. . . . . . . . . . . . . . . . . . . 68

5.16 3D-Var for the Lorenz-96 model with observation network 2 and σo = 0.50. The
average analysis RMSE is 4.4278. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.17 EnSRF for the Lorenz-96 with K = 10, observation network 1 and σo = 0.50. . . 69
5.18 EnSRF analysis RMSE results for K = 10, observation network 1 and σo = 0.50.

The mean value of the RMSE is 3.8939. . . . . . . . . . . . . . . . . . . . . . . . 69
5.19 EnSRF for the Lorenz-96 with K = 40, observation network 1 and σo = 0.50. . . 70
5.20 EnSRF analysis RMSE results for K = 40, observation network 1 and σo = 0.50.

The mean value of the RMSE is 2.2899. . . . . . . . . . . . . . . . . . . . . . . . 70
5.21 EnSRF for the Lorenz-96 with K = 40, observation network 1, σo = 0.50, infla-

tion factors γ = 1.2 and ` = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.22 EnSRF analysis RMSE results for K = 40, observation network 1 and σo = 0.50.

The mean value of the RMSE is 2.2923. . . . . . . . . . . . . . . . . . . . . . . . 71
5.23 EnSRF for the Lorenz-96 with K = 40, observation network 1, σo = 0.50 and

forecast model with forcing term F = 8.2. . . . . . . . . . . . . . . . . . . . . . . 72
5.24 EnSRF for the Lorenz-96 with K = 40, observation network 1, σo = 0.50, as-

suming a forecast model with forcing term F = 8.2 and inflation factors γ = 1.2
and ` = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.25 EnSRF analysis RMSE results for K = 40, observation network 1, σo = 0.50,
assuming a forecast model with forcing term F = 8.2. In the left plot we do not
use inflation, while in the right plot the inflation factors are γ = 1.2 and ` = 0.05. 73

5.26 EnSRF for the Lorenz-96 with K = 40, observation network 2 and σo = 0.50. . . 73
5.27 EnSRF for the Lorenz-96 with K = 40, observation network 2 and σo = 0.50.

Evolution in time of the 13th and 26th components, which are observed and
unobserved respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.28 EnSRF analysis RMSE results for K = 40, observation network 2 and σo = 0.50.
The mean value of the RMSE is 3.2518. . . . . . . . . . . . . . . . . . . . . . . . 74

x



Chapter 1

Introduction

Data Assimilation (DA) is a technique combining past knowledge of a system, in the form of
a numerical model, and new information about the system, in the form of observations. The
idea of Data Assimilation was firstly introduced in the form of the least-squares method by Carl
Friedrich Gauss, in 1801, who managed to predict with impressive accuracy the position and
date of the reappearance of the planetoid Ceres1.

Initially, DA methods arose from the need to improve weather forecasting in meteorology by
determining the initial conditions needed for subsequent computer forecasts. Today, there are
many other fields in which DA methods find application: in oceanography, in hydrology, in
seismology, in nuclear fusion, in medicine, etc. Except from finding initial conditions for pre-
dictions, they can also be used for calibration and validation, for designing of the observation
system, monitoring and assessment, as well as for reanalysis and better understanding of a
system (model and data errors, physical process interactions, parameters, etc).

Assimilation methods are divided into two classes: sequential and variational assimilation meth-
ods. Sequential DA takes into account observations created in the past until the time of the
analysis, which means that the observations are assimilated as soon as they become available.
This approach corresponds to the real-time assimilation systems. On the other hand, variational
DA is based on the optimal control theory. In this approach we seek a state that best fits the
data within an assimilation time-window. Therefore, optimization is performed on unknown
parameters by minimizing a given cost function that measures the model-to-data misfit.

There is also the so-called ensemble modeling or ensemble forecasting. Many forecasts are run
with slightly perturbed initial conditions (or with different models) and an average, or ensemble
mean of the different forecasts is being created. The ensemble techniques provide information
about the uncertainty in the initial conditions, since a large ensemble of forecasts is available.
In this thesis, we present DA methods that are extensively used in the fields described above,
but we focus on the Numerical Weather Prediction (NWP) problem and how weather forecast-
ing can be optimized using assimilation methods.

1Giuseppe Piazzi discovered Ceres on January 1, 1801 and made 19 observations over 42 days, before the
object disappeared in the vicinity of the Sun. Gauss was able to calculate the orbit of Ceres using only three of
Piazzi’s observations and hence, initiated the least-squares theory.

1



1.1 Data Assimilation for NWP

The intention of NWP is to predict the weather using the mathematical models of the atmo-
sphere and the ocean. It is classically viewed as an initial-value problem2, according to which
the governing equations of geophysical fluid dynamics are integrated forward in time from a
given estimate of the state of the atmosphere at some initial time. In order to make a valid
forecast the numerical model must be a realistic representation of the atmosphere and also the
initial conditions must be known accurately.
One of the problems encountered in the procedure of forecasting is the nature of the system
describing the weather. In 1963, the famous meteorologist Edward N. Lorenz in [24] concluded
that the weather exhibits chaotic behavior, i.e., small errors in the initial conditions of a forecast
grow rapidly affecting the predictability. In order to overcome this problem, data assimilation
techniques have been developed and employed in the estimation of suitable initial conditions.
The aim of this thesis is the study and implementation of such methods, since the problem of
determining suitable initial conditions for a forecast model is very important and complex, and
has become a science itself.
Our main goal is to be able to produce an accurate estimate of the true state of the atmosphere
at a given time. This estimate is called analysis state. The basic information that can be used
to produce the analysis is a collection of observations3 of the true state. If the model state
is over-determined by the observations, then the analysis reduces to an interpolation problem.
Most of the time, the analysis problem is under-determined because the data are sparse and
usually indirectly related to the model variables. In order to make it a well-posed problem, it is
necessary to add some background information in the form of an a-priori model state estimate.
The background information initially was a climatology, but as the forecasting became better,
a short-range forecast is chosen as the first-guess in operational data assimilation systems or
analysis cycles. A typical 6-hour data assimilation cycle, performed four times a day for a global
model, needs a 6-hour forecast as background field. The definition of data assimilation for the
NWP problem follows.

Data assimilation is an analysis technique in which observations that are distributed
in time, are incorporated into the model state of a dynamical numerical model to
produce an estimate of the true state of the atmosphere as accurately as possible.

Model and Observations

Let X = Rn be the model space and let x ∈ X the model’s state vector. We shall denote by
xt ∈ X the truth or the true state of the system. Our goal is to produce an estimate xa (where
a stands for the analysis) of the true state xt. As explained earlier, the outcome of a previous
forecast can serve as the background information in the new analysis, denoted by xb, where b
refers to background4. The evolution of an atmospheric or oceanic system from time ti−1 to
time ti is governed by an equation of the form

xb(ti) = Mi−1[x
a(ti−1)],

2A system of differential equations is referred to as an initial value problem when the solution depends not
only on boundary conditions, but also on the values of the unknown fields or their derivatives at some initial
time.

3Many types of data are currently available, such as satellite and radar observations, but, usually, they do not
measure directly the variables of the model (temperature, wind, surface pressure, moisture, etc).

4The notation xb is meant to be the best estimate of the current state x(t) prior to using the observations at
time t. In the methods presented in the sequel, xb will commonly be the result of a previous short-range forecast
(or even, the result of a previous assimilation) hence, the notations xb or xf will be used correspondingly.
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where M : X → X is the (nonlinear) model operator that represents the dynamical model and
is a function from the model space into itself.

Let Y = Rp be the observation space. Observations yo ∈ Y become available through the
observation model

yo = H(xt) + εo,

where H : X → Y is the (nonlinear) observation operator, a function from the model space to
the observation space, with εo be the observation error.

The background, the analysis and the observations contain errors defined, respectively, as

εb = xb − xt,

εa = xa − xt,

εo = yo −H(xt).

Since the true state xt is unknown, we don’t know the errors of the background and the obser-
vations. However, we can make some assumptions about their statistical properties. We assume
that the errors are having mean zero, i.e.,

E{εb} = E{εa} = E{εo} = 0.

Therefore, their respective error covariance matrices are defined as

B = E{εbεTb }, Pa = E{εaεTa }, R = E{εoεTo }.

and we also assume that the background and the observation errors are uncorrelated, i.e.,
E{εoεTb } = 0.

In order to incorporate the available observations into our estimate, we compare the observation
vector yo with the current state estimate xb. To do so, we define the difference between the
observations and the background as the observational increments or innovation vector

d = yo −H(xb).

The observation operator in general is nonlinear but it can be linearized using a first order
Taylor approximation, i.e.,

H(x + δx) = H(x) + Hδx,

where H is a p×n matrix whose elements are the first-order partial derivatives hi,j = ∂Hi/∂xj .
Then, the innovation vector can be written in the form

d = yo −H(xb) = yo −H(xt + (xb − xt)) = εo −Hεb.

It will become evident in the next chapter that, the analysis xa is obtained by summing the
background and the innovation multiplied by a weight W, which can be determined by using the
estimated statistical error covariances of the forecast and the observations. Hence, the analysis
is

xa = xb + W[yo −H(xb)] or xa = xb + Wd.

Subsequently, we shall prove step by step that, under the statistical assumptions we have made
so far, W is the optimal weight matrix given by

W = BHT [R + HBHT ]−1,
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which provides the optimal analysis xa. Having determined the optimal weight matrix, we are
able to derive the formula of the analysis error covariance matrix, Pa, namely,

Pa = (I−WH)B.

The procedure that we have followed so far is the so-called Optimal Interpolation.

Another approach for the same problem is the Three-Dimensional Variational method (3D-Var),
in which, we wish to find the optimal analysis xa that minimizes the functional

2J(x) = (x− xb)TB−1(x− xb) + [yo −H(x)]TR−1[yo −H(x)].

This functional is defined as the distance between the model state x and the background xb,
weighted be the inverse of the background error covariance, plus the distance to the observations
yo weighted by the inverse of the observation error covariance.

The minimum of the 3D-Var functional is obtained for x = xa such that

∇xJ(xa) = 0.

Formally, the 3D-Var analysis is found to be

xa = xb + W[yo −H(xb)],

where W = [B−1 + HTR−1H]−1HTR−1,

but in practice, the minimum of J(x) is obtained using iterative methods, such as the Steepest
Descent, the Conjugate Gradient or the quasi-Newton algorithms.

If the observations are distributed not only in space but also in time (i.e., they are available
within a time window), then 3D-Var is generalized to the Four-Dimensional Variational assimi-
lation method or 4D-Var, in which the minimization of the corresponding functional is defined
over a four-dimensional space (3 dimensions for space and 1 for time).

The 4D-Var cost function includes a term measuring the distance to the background at the
beginning of the time interval, together with a sum accounting for the observations collected
over a k-hour time window:

J
[
x(t0)

]
=

1

2

[
x(t0)− xb(t0)

]T
B−1

0

[
x(t0)− xb(t0)

]
+

1

2

N∑
i=0

[
H(xi)− yo

i

]T
R−1

i

[
H(xi)− yo

i

]
.

The cost function is minimized with respect to the initial state of the model with the time
interval x(t0), and the analysis at the time of the interval is given by the model integration from
the solution x(tn) = M0[x(t0)].

The gradient of the 4D-Var functional, as will be shown in the sequel, is given by

∂J

∂x(t0)
= B−10

[
x(t0)− xb(t0)

]
+

N∑
i=0

LT (ti, t0)H
T
i R−1i [H(xi)− yoi ],

where Hi and Li are the linearized Jacobian matrices ∂H/∂xi and ∂M/∂x0, respectively.
In order to obtain the last equation, we have to define the tangent linear and adjoint models5

5Assuming a time interval [t0, ti], the tangent linear model advances a perturbation from t0 to ti, whereas the
adjoint model advances a perturbation backward in time, from the ti to t0. Refer to the Definition (2.3.1).
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(L(t0, ti) and LT (ti, t0), respectively), concepts that will be clarified later.

We saw that OI and 3D-Var methods assume a constant background error covariance matrix.
This assumption implies that all the background errors are statistically stationary, which is
not true in weather forecasting. In fact, there is a day-to-day variability in the forecast error,
therefore it is important to take into account the “errors of the day” during the assimilation
process. We give a brief introduction to a more sophisticated method, that falls within the
sequential assimilation techniques, the Kalman Filtering (KF). The Kalman Filter is formally
similar to OI, but in KF the forecast6 or background error covariance, Pf (ti), is advanced using
the model itself. Kalman Filtering initially was designed for linear models but in the present
work, we focus on the Extended Kalman Filter (EKF) which is used for nonlinear applications
of Kalman Filtering.

The forecast state is advanced from the previous analysis time ti−1 to the current time ti through
the nonlinear model

xf (ti) = Mi−1[x
a(ti−1)].

The model is not perfect, i.e., we assume that the true state of the atmosphere is given by

xt(ti) = Mi−1[x
t(ti−1)] + η(ti−1),

where η(ti−1) is a zero-mean noise process with covariance matrix Qi−1 = E{ηi−1ηTi−1}.

The model is nonlinear, therefore we have to linearize it between two consecutive time steps
ti−1 and ti, in order to obtain the forecast error covariance. Introducing a perturbation and
performing a first-order approximation of the model, the forecast error is in the form

εfi = xt(ti)− xf (ti) ≈ Li−1ε
a
i−1 + ηi−1,

where Li−1 is the tangent linear model matrix, i.e., the matrix that transforms the initial
perturbation from time ti−1 to time ti. Consequently, the forecast error covariance matrix is
found to be

Pf (ti) = Li−1 Pa(ti−1) LTi−1 + Qi−1.

Once again, we assume that the observations contain errors with zero mean and error covariance
matrix Ri = E{εoi , εoi T } and are given by

yoi = H[xt(ti)] + εoi ,

where H is the (nonlinear) observation operator. After completing the forecast step at time ti,
the innovation vector is

di = yoi −H[xf (ti)]

and the optimal weight matrix, or the so-called Kalman gain, that minimizes the analysis error
covariance Pa

i is found to be

Ki = Pf (ti) HT
i

[
Ri + Hi Pf (ti) HT

i

]−1
.

6We use the superscript f for forecast instead of b, since the Kalman Filter algorithm consists of two steps:
the forecast and the analysis step.
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Following the above calculations, we arrive at the analysis state and its error covariance written
as in OI, using the calculated Pf (ti) and Ki matrices, instead of B and W, respectively:

xa(ti) = xf (ti) + Kidi,

Pa(ti) = (I−KiHi)P
f (ti).

Although the Extended Kalman Filter provides the analysis estimate and its uncertainty, it
requires the calculation of the tangent linear model matrix, which has size n (the degrees of
freedom of the model), as well as the update of the error covariance, which is equivalent to
performing O(n) model integrations. Thus, for high-dimensional problems EKF is costly.

There is a simplification of Kalman Filtering, the Ensemble Kalman Filter (EnKF), which does
not require the derivation of the tangent linear operator or integrations backward in time. It is
an approximation of the EKF, which avoids evolving the entire error covariance matrix at every
time step. Instead, an ensemble of K data assimilation cycles is used to estimate the forecast
uncertainty. Thus, we seek an analysis ensemble mean which reflects both an estimate of the
true atmospheric state and its uncertainty.

We begin with an ensemble {xak, k = 1, . . . ,K, xak ∈ X} consisting of K members at time
ti−1. Evolving each ensemble member according to the nonlinear forecast model

xfk(ti) = Mi−1[x
a
k(ti−1)], k = 1, . . . ,K,

we obtain the forecast ensemble xfk(ti) at time ti, k = 1, . . . ,K.
Then, the best available estimate to the system state, before the observations are taken into
account, is the background ensemble mean

xf =
1

K

K∑
k=1

xfk .

We define the background ensemble perturbations matrix Xf , whose k-th column is defined as

Xf =
1√

K − 1

(
xf1 − xf , . . . ,xfK − xf

)
. (1.1)

Then, the uncertainty in the state estimate is described by the background error covariance
matrix

Pf = Xf (Xf )T .

We seek an ensemble {xak, k = 1, . . . ,K} having sample mean

xa =
1

K

K∑
k=1

xak

and error covariance matrix

Pa = Xa(Xa)T ,

where Xa is the n×K matrix of the analysis ensemble perturbations, defined as

Xa =
1√

K − 1
(xa1 − xa, . . . ,xaK − xa) . (1.2)

Then, the analysis estimate is simply the analysis ensemble mean, which based on the standard
KF is

xa = xf + K[yo −H(xf )],

where the Kalman Gain matrix is given by

K = Xf (Xf )THT [HXf (Xf )THT + R]−1.
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1.2 The Lorenz-96 Model

We shall test the 3D-Var and EnKF techniques using the Lorenz-96 model. This model was
introduced by Edward N. Lorenz in 1996, see [25]. The system consists of N ordinary differential
equations

dXi

dt
= (Xi+1 −Xi−2)Xi−1 −Xi + F, (1.3)

for i = 1, . . . , N and cyclic boundary conditions X−1 = XN−1, X0 = XN , XN+1 = X1. Here, F
is a constant forcing term. It has been extensively used as a toy-model for Numerical Weather
Prediction because it shares certain properties with many atmospheric models:

• the nonlinear, quadratic term simulates advection and conserves the total energy, defined
as (X2

1 + . . .+X2
N )/2,

• the linear term is supposed to represent mechanical or thermal dissipation and decreases
the total energy,

• the constant term represents external forcing, which prevents the total energy from de-
caying to zero.

Lorenz concluded that similar error growth characteristics to operational NWP systems are
obtained in the Lorenz-96 system if a time unit is associated with 5 days. If we multiply (1.3)
by Xi and average over all values of n and over a long enough time to make average time
derivatives negligibly small, it follows that

X2 = FX, (1.4)

where the bar (−) over the quantities denotes the average. From the last expression, we can
form the variance of X, i.e.,

σ2 = E[X2]−
(
E [X]

)2
= X2 −X2

= X(F −X). (1.5)

Since the variance is always nonnegative, it follows that the mean X lies in the interval [0, F ]
and the standard deviation σ lies in the interval [0, F/2]. In the steady state solution where
Xi = F for each i, we have X = F and σ = 0.
We assume N = 40 variables and the forcing term to be F = 8. For that value of F , it has been
shown that the system exhibits chaotic behavior and for N = 40 there are 13 positive Lyapunov
exponents, where the largest corresponds to a doubling time of 2.1 days (a value close to one
that seems to prevail in some large atmospheric models). The variables fluctuate about the
mean with a climatological standard deviation σclim ≈ 3.6 (refer to [25, 26] for a more detailed
discussion of the model).
We set as initial condition of the system the steady state solution Xi = F , for each i = 1, . . . , N .
We introduce a perturbation in the middle variable X20 by 0.008, i.e., X20 = F + 0.008 = 8.008
and perform numerical integration using a hand-coded fourth-order Runge-Kutta scheme [1],
with a time-step ∆t = 0.05 or 6 hours.
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The remaining of this thesis is organized as follows: In chapter 2, we begin by presenting a
simple least-squares linear estimation problem, seeking the optimal analysis estimate of a scalar
quantity, given two independent observations. Thereafter, we try to find the same best estimate
using the variational approach of the problem, i.e., we proceed to the minimization of a particu-
lar cost function. We introduce the Optimal Interpolation (OI), Three-Dimensional Variational
assimilation (3D-Var) and Four-Dimensional Variational assimilation (4D-Var) methods and
present some results of the 3D-Var implementation for the Lorenz-96 model.

In chapter 3, we present two variants of Kalman Filtering (KF): the Extended Kalman Filter
(EKF) and the Ensemble Kalman Filter (EnKF). As seen in the sequel, the EKF is being used
for strongly nonlinear models as it enables the linearization of the operators encountered in
the model, while the EnKF, which falls within the category of Ensemble Forecasting, has an
easier implementation since it does not require any linearization and has a big computational
advantage compared to the EKF. The implementation of the Ensemble Kalman Filter is not
unique, it can be regarded either as a Stochastic or as a Deterministic filter. In this thesis, we
consider the deterministic implementation, which is known as the Ensemble Square Root Filter
(EnSRF). After the description of the Ensemble Kalman filtering, we discuss some results of
the EnSRF implementation for the Lorenz-96 model.

In chapter 4, we present the Weather, Research and Forecasting Model (WRF model), which is
a state-of-the-art atmospheric modeling system designed for both meteorological research and
numerical weather prediction. We focus on the WRF Data Assimilation system (WRFDA)
provided by the WRF Model, which includes an incremental variational 3D-Var and 4D-Var
algorithm, as well as a hybrid scheme between the variational and ensemble approaches, known
as Hybrid ETKF-3DVAR.
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Chapter 2

Data Assimilation Techniques

According to Talagrand [33] and Kalnay [18], the best estimate of the state of the atmosphere
(i.e., the analysis state) is obtained from a statistical combination of prior information about
the atmosphere, and observations. That prior information is what we call background or first
guess. In order to obtain the optimal estimate, we need statistical information about the errors
included in the observations.

Least-squares linear estimation
We begin with a classic example based on statistical estimation theory. Suppose we want to
find the best estimate of the true value of a scalar quantity, for instance the true temperature
Tt, given two independent observations T1 and T2 of the form

T1 = Tt + ε1,

T2 = Tt + ε2,
(2.1)

where εi, i = 1, 2 are “observational” errors. We represent the expected value as E{·} and we
assume that the instruments that measure T1 and T2 are unbiased, i.e., E{T1} − Tt = 0 and
E{T2} − Tt = 0 that is,

E{ε1} = E{ε2} = 0. (2.2)

Given the assumption made in (2.2), we have that the variances of the observational errors are

E{ε21} = σ21 and E{ε22} = σ22 (2.3)

and we also assume that the errors of the two observations are uncorrelated, i.e., E{ε1ε2} = 0.
Using a linear combination of T1, T2 which represent the available information about the true
value of the temperature, we try to estimate Tt. This linear combination, is the analysis Ta:

Ta = a1T1 + a2T2. (2.4)

Since the expected value is a linear operator, we have that

E{Ta} = E{a1T1 + a2T2}
= a1E{T1}+ a2E{T2}
= a1E{Tt + ε1}+ a2E{Tt + ε2}
= a1E{Tt}+ E{ε1}+ a2E{Tt}+ E{ε2},
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which leads to the conclusion that

E{Ta} = a1E{Tt}+ a2E{Tt}. (2.5)

The requirement that the analysis be unbiased, i.e., E{Ta} = Tt, implies that

a1 + a2 = 1. (2.6)

We understand that Ta will be the best estimate of Tt if the coefficients a1 and a2 are chosen
as to minimize, for example, the mean square error (MSE) of Ta:

MSE(Ta) = E
{

(Ta − Tt)2
}

= E
{

(a1ε1 + a2ε2)
2
}

= E
{[
a1(T1 − Tt) + a2(T2 − Tt)

]2}
. (2.7)

The last expression holds because

Ta − Tt = a1T1 + a2T2 − Tt
= a1(Tt + ε1) + a2(Tt + ε2)− Tt
= (a1 + a2)Tt + a1ε1 + a2ε2 − Tt
= Tt + a1ε1 + a2ε2 − Tt
= a1ε1 + a2ε2.

For an unbiased estimator, such as Ta, the MSE is the variance of the estimator. Combining
this fact together with (2.6) and (2.7), we get an expression for the variance of Ta:

σ2a = E{(a1ε1 + a2ε2)
2}

= E{a21ε21 + (1− a1)2ε22 + 2a1(1− a1)ε1ε2}
= E{a21ε21 + ε22 + a21ε

2
2 − 2a1ε

2
2 + 2a1ε1ε2 − 2a21ε1ε2}

= a21E{ε21}+ E{ε22}+ a21E{ε22} − 2a1E{ε22}+ 2a1E{ε1ε2} − 2a21E{ε1ε2}
= a21σ

2
1 + σ22 + a21σ

2
2 − 2a1σ

2
2. (2.8)

We wish to minimize σ2a with respect to a1 which translates to ∂σ2a/∂a1 = 0, i.e.,

2a1σ
2
1 + 2a1σ

2
2 − 2σ22 = 0. (2.9)

Solving for a1 and a2 yields

a1 =
σ22

σ21 + σ22
and a2 =

σ21
σ21 + σ22

. (2.10)

An alternative form for a1, a2 can be found by dividing equation (2.9) by σ21σ
2
2

a1
σ22

+
a1
σ21
− 1

σ21
= 0,

or equivalently,

a1

(
1

σ22
+

1

σ21

)
− 1

σ21
= 0.

This leads to the expressions

a1 =
1/σ21

1/σ21 + 1/σ22
and a2 =

1/σ22
1/σ21 + 1/σ22

. (2.11)
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Substituting the coefficients (2.10) into equation (2.8), we obtain a relationship between the
analysis variance and the observational variances

σ2a = a21(σ
2
1 + σ22) + σ22 − 2a1σ

2
2

=
σ42

(σ21 + σ22)2
(σ21 + σ22) + σ22 − 2

σ22
σ21 + σ22

σ22

=
σ42

σ21 + σ22
+ σ22 − 2

σ42
σ21 + σ22

= σ22 −
σ42

σ21 + σ22

=
(σ21 + σ22)σ22 − σ42

σ21 + σ22

=
σ21σ

2
2

σ21 + σ22
. (2.12)

Moreover, the inverse of the analysis error variance is

1

σ2a
=
σ21 + σ22
σ21σ

2
2

=
σ21
σ21σ

2
2

+
σ22
σ21σ

2
2

,

therefore,

1

σ2a
=

1

σ21
+

1

σ22
. (2.13)

The last expression indicates that the precision of the analysis, i.e., the inverse of the corre-
sponding error variance, is the sum of the precisions of the observations.

Variational approach
The same best estimate of Tt can be found using a different approach. We minimize the
function J(T ), defined as the sum of the square of the distance between the estimate T and the
two observations

J(T ) =
1

2

[
(T − T1)2

σ21
+

(T − T2)2

σ22

]
, (2.14)

where the observational error variances σ21, σ
2
2 account for the accuracy of the observations.

The minimum of the cost function (2.14) with respect to T = Ta, occurs when ∂J/∂Ta = 0.
Differentiating (2.14) with respect to Ta yields

∂J

∂Ta
=

∂

∂Ta

[
(Ta − T1)2

2σ21
+

(Ta − T2)2

2σ22

]

=
∂

∂Ta

[
T 2
a + T 2

1 − 2TaT1
2σ21

+
T 2
a + T 2

2 − 2TaT2
2σ22

]

=
2Ta − 2T1

2σ21
+

2Ta − 2T2
2σ22

.
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Therefore, we want

∂J

∂Ta
=
Ta − T1
σ21

+
Ta − T2
σ22

= 0. (2.15)

Initially, we calculate the quantities Ta − T1 and Ta − T2 using the definitions (2.1), (2.4) :

Ta − T1 = a1T1 + a2T2 − T1
= (a1 − 1)T1 + a2T2

= (a1 − 1)(Tt + ε1) + a2(Tt + ε2)

= a1Tt + a1ε1 − Tt − ε1 + a2Tt + a2ε2

= (a1 + a2)Tt − Tt + a1ε1 + a2ε2 − ε1 (we assumed that a1 + a2 = 1)

= Tt − Tt + a1ε1 + a2ε2 − ε1
= a1ε1 + a2ε2 − ε1, (2.16)

Ta − T2 = a1T1 + a2T2 − T2
= a1T1 + (a2 − 1)T2

= a1(Tt + ε1) + (a2 − 1)(Tt + ε2)

= a1Tt + a1ε1 + a2Tt + a2ε2 − Tt − ε2
= (a1 + a2)Tt − Tt + a1ε1 + a2ε2 − ε2 (we assumed that a1 + a2 = 1)

= Tt − Tt + a1ε1 + a2ε2 − ε2
= a1ε1 + a2ε2 − ε2. (2.17)

(2.18)

Substituting (2.16), (2.17) into (2.15), the result is

a1ε1 + a2ε2 − ε1
σ21

+
a1ε1 + a2ε2 − ε2

σ22
= 0

σ22(a1ε1 + a2ε2 − ε1) + σ21(a1ε1 + a2ε2 − ε2) = 0

(a1ε1 + a2ε2)(σ
2
1 + σ22)− σ22ε1 − σ21ε2 = 0,

and thus we arrive at the expression

a1ε1 + a2ε2 =
σ22

σ21 + σ22
ε1 +

σ21
σ21 + σ22

ε2. (2.19)

(2.20)

In order to satisfy equation (2.19), the weights should be

a1 =
σ22

σ21 + σ22
and a2 =

σ21
σ21 + σ22

.

We have arrived at the main results of this section, namely that the minimum of the cost func-
tion defined in (2.14) is obtained for T = Ta with the same weights as in (2.10).
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Maximum Likelihood Approach
The cost function (2.14) may also be formulated using the notion of the maximum likelihood:

Given two observations T1 and T2, which have normally distributed errors with standard
deviations σ1 and σ2, respectively, find the most likely value of the true temperature T .

We assume that the errors of the observations have Gaussian statistics. Therefore, the probabil-
ity density functions of the observations T1 and T2 given a true value T and the corresponding
standard deviations σ1 and σ2, are given by the Gaussian distributions:

pσ1(T1|T ) =
1

σ1
√

2π
e
− (T1−T )2

2σ21 and pσ2(T2|T ) =
1

σ2
√

2π
e
− (T2−T )2

2σ22 . (2.21)

In order to use the maximum likelihood, we first need to specify the joint probability density
function of the two observations. Since they are assumed to be independent, their joint proba-
bility is simply the product of their distributions pσ1 , pσ2 .
Now, we look at this joint probability from a different perspective, by considering the two ob-
servations to be fixed “parameters” of this function, whereas T will be the function’s variable.
Therefore, we define the likelihood function:

Lσ1,σ2(T ||T1, T2) = pσ1(T1|T )pσ2(T2|T ) =
1

2πσ1σ2
exp

{
− (T1−T )2

2σ2
1
− (T2−T )2

2σ2
2

}
. (2.22)

The most likely value of T , given the two independent observations T1 and T2, is the one that
maximizes the likelihood function

max
T
Lσ1,σ2(T ||T1, T2) =

1

2πσ1σ2
exp

{
− (T1−T )2

2σ2
1
− (T2−T )2

2σ2
2

}
. (2.23)

The logarithm is a monotone function, therefore we can take the logarithm of the likelihood
and obtain the same maximum likelihood temperature:

max
T

lnLσ1,σ2(T ||T1, T2) = max
T

[
const.− (T1−T )2

2σ2
1
− (T2−T )2

2σ2
2

]
= max

T

[
const.− J(T )

]
.

(2.24)

Note that, since the standard deviations are constant, the maximum likelihood is attained when
the cost function (2.14) is minimized.

Another alternative for the derivation of (2.14) is the Bayesian approach. We assume that we
made an observation T1 and thus, we have a prior probability distribution of the truth

pT1,σ1(T ) =
1

σ1
√

2π
e
− (T1−T )2

2σ21 , (2.25)

which precedes the second observation. From Bayes formula, the a posteriori probability of the
truth given the observation T2 is

pσ2(T |T2) =
pσ2(T2|T ) pT1,σ1(T )

pσ2(T2)
. (2.26)

Since the denominator

pσ2(T2) =

∫
T ′

1

σ2
√

2π
e
− (T2−T

′)2

2σ21 dT ′,
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is independent of T , the estimate of the truth which maximizes the a posteriori probability
(2.26), is obtained by maximizing the logarithm of the numerator

max
T

ln[pσ2(T2|T ) pT1,σ1(T )] = max
T

ln
[
const.− (T2−T )2

2σ2
2
− (T1−T )2

2σ2
1

]
. (2.27)

This is exactly the same as (2.24) and thus, the estimate is again the minimum of the cost
function (2.14).

Sequential data assimilation
So far we have seen the simple example with the two pieces of information. Now, we assume
that the information T1 = Tb is the forecast (or background), whereas T2 = To now represents
an observation. The analysis is Ta = abTb + aoTo. We know that

ab =
σ2o

σ2b + σ2o
, ao =

σ2b
σ2b + σ2o

and also, ab + ao = 1.

Thus, we rewrite the analysis as

Ta = (1− ao)Tb + aoTo = Tb + ao(To − Tb) = Tb +W (To − Tb), (2.28)

where W is the optimal weight given by

W = ao =
σ2b

σ2b + σ2o
. (2.29)

Looking back at the equation (2.28), the difference between the observation and the background
is refered to as the innovation. This equation indicates that the analysis is obtained by adding
to the background the innovation weighted by the optimal weight.
Regarding the optimal weight W , it is defined as the background error variance σ2b divided by
the sum of the background and the observation error variances, which means that the larger
the background error variance, the larger the correction to the first guess.

The analysis error variance is

σ2a =
σ2bσ

2
o

σ2b + σ2o
,

as defined in (2.12). It can also be written (including the optimal weight) as

σ2a =
σ2o

σ2b + σ2o
σ2b = abσ

2
b = (1− ao)σ2b = (1−W )σ2b . (2.30)

These properties of the analysis are important because they also apply in multidimensional
problems. In subsequent sections we study assimilation methods, such as the Optimal Interpo-
lation and the Kalman Filter, in which Ta and Tb are three-dimensional fields and To represents
a set of observations. We will have to replace the “error variance” by “error covariance matrix”
and the “optimal weight” by an “optimal gain matrix”.
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2.1 Optimal Interpolation

In this section, we consider the complete Numerical Weather Prediction (NWP) operational
problem:

Find an optimal analysis of a field of model variables xa, given
• a background field xb available at grid points in two or three dimensions,
• a set of p observations yo available at arbitrarily distributed locations ri, i = 1, . . . , p.

As indicated earlier, the analysis is the background plus the innovation weighted by the optimal
weight which we obtain from statistical interpolation

xt − xb = W[yo −H(xb)]− εa = Wd− εa, εa = xa − xt, (2.31)

or xa = xb + W[yo −H(xb)] = xb + Wd. (2.32)

The truth, xt, the background, xb, and the analysis, xa, are vectors of length n. The weights are
given by the matrix W of dimension n×p and H is the observational operator which transforms
model variables into observed variables and is, generally, nonlinear.
Moreover, the observation vector yo is of length p (where p is the number of the available
observations) and d is the innovation or “observational increments” vector, defined as

d = yo −H(xb). (2.33)

The Best Linear Unbiased Estimator (BLUE)
An important concept of the Optimal Interpolation is that it produces the best linear unbiased
estimate of a field, given a set of arbitrarily distributed observations. Assume that we have two
time series

x(t) =


x1(t)
x2(t)

...
xn(t)

 , y(t) =


y1(t)
y2(t)

...
yp(t)

 , (2.34)

with zero mean values E(x) = 0, E(y) = 0, respectively. The Best Linear Unbiased Estimation
(BLUE) of x in terms of y is

xa(t) = Wy(t), (2.35)

which is an approximation of the true

x(t) = Wy(t)− ε(t), (2.36)

where ε(t) = xa − xt is the analysis error and the weight matrix W actually minimizes the
mean square error E{εTε}.

In order to derive an explicit form for W we write (2.36) in component form

xi(t) =

p∑
k=1

Wikyk(t)− εi(t), i = 1, . . . , n. (2.37)
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Solving for the analysis error, squaring and summing, gives

n∑
i=1

ε2i (t) =
n∑
i=1

 p∑
k=1

Wikyk(t)− xi(t)

2

. (2.38)

Now, we take the derivative with respect to the components of W

∂

(
n∑
i=1

ε2i (t)

)
∂Wij

= 2

 p∑
k=1

Wikyk(t)− xi(t)

 yj(t) = 2

 p∑
k=1

Wikyk(t)yj(t)− xi(t)yj(t)

 .
Setting it equal to zero, we have [

WyyT
]
ij
−
[
xyT

]
ij

= 0.

Taking the expected value of the last equation we get the optimal weight matrix which gives
the best linear unbiased estimation in (2.35)

WE{yyT } − E{xyT } = 0,

therefore,

W = E
{

xyT
}[

E
{

yyT
}]−1

. (2.39)

We make the following assumptions: The background error and the analysis error are vectors
of length n:

εb(x, y) = xb(x, y)− xt(x, y),

εa(x, y) = xa(x, y)− xt(x, y).
(2.40)

The available observations contain error which is defined as

εo(ri) = yo(ri)− yt(ri) = yo(ri)−H[xt(ri)]. (2.41)

We don’t know the errors of the available background and observations, because we don’t know
the truth state xt. However, we can make some assumptions about the statistical properties of
these errors. We assume that the background and the observations are unbiased:

E{εb(x, y)} = E{xb(x, y)} − E{xt(x, y)} = 0,

E{εo(ri)} = E{yo(ri)} − E{yt(ri)} = 0.
(2.42)

We define the error covariance matrices for the background, the observations and the analysis,
respectively,

B = E{εbεTb }, R = E{εoεTo }, Pa = E{εaεTa }, (2.43)

and we assume that the background and the observation errors are uncorrelated, i.e.,

E{εoεTb } = 0.

The error covariance matrices B ∈ Rn×n and R ∈ Rp×p are assumed to be known.
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The nonlinear observation operator H can be linearized using the Taylor series expansion, as

H(x + δx) = H(x) + Hδx, (2.44)

where H is a p×n matrix whose elements are the first-order partial derivatives hi,j = ∂Hi/∂xj .
The innovation vector (2.33) is now

d = yo −H(xb) = yo −H(xt + (xb − xt))

= yo −H(xt)−H(xb − xt) = εo −Hεb.
(2.45)

We use the BLUE formula to derive the optimal weight matrix W defined in (2.31). From the
equations (2.45) and (2.39), we have

W = E
{

(xt − xb)[yo −H(xb)]T
}(

E
{

[yo −H(xb)][yo −H(xb)]T
})−1

= E
{

(−εb)(εo −Hεb)
T
}(

E
{

(εo −Hεb)(εo −Hεb)
T
})−1

=
[
−E{εbεTo }+ E{εbεTb } HT

] [
E{εoεTo } − E{εoεTb } HT −HE{εbεTo }+ H E{εbεTb } HT

]−1
= E{εbεTb } HT

[
E{εoεTo }+ H E{εbεTb } HT

]−1
,

therefore, we conclude that

W = BHT [R + HBHT ]−1. (2.46)

Note that the last equation holds because the background and observation errors are uncorre-
lated thus, the terms which include E{εoεTb } vanish.

Looking back at (2.31), we have that

εa = Wd + xb − xt = Wd + εb, where d = εo −Hεb.

We can also derive the error covariance matrix, Pa, of the analysis

Pa = E{εaεTa } = E
{

(Wd + εb)(Wd + εb)
T
}

= WE{ddT }WT + WE{dεTb }+ E{εbdT }WT + E{εbεTb },
(2.47)

where

E{ddT } = E{(εo −Hεb)(εo −Hεb)
T }

= E{εoεTo } − E{εoεTb }HT −HE{εbεTo }+ HE{εbεTb }HT = R + HBHT ,

E{d εTb } = E{(εo −Hεb)ε
T
b } = E{εoεTb } −HE{εbεTb } = −HB,

E{εbdT } = E{εb(εTo − εTb HT )} = E{εbεTo } − E{εbεTb }HT = −BHT ,

E{εbεTb } = B.

Substituting the above terms into (2.47) we have

Pa = W(R + HBHT )WT −WHB−BHTWT + B

= B−WHB−BHTWT + WRWT + WHBHTWT .
(2.48)
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Gathering some common terms in (2.48), yields

Pa = (I−WH)B−BHTWT + W(R + HBHT )WT

= (I−WH)B +
[
W(R + HBHT )−BHT

]
WT (from (2.46): BHT = W[R + HBHT ])

= (I−WH)B +
[
W

hhhhhhh(R + HBHT )−W
hhhhhhh(R + HBHT )

]
WT .

Thus, we obtain a compact form for the analysis error covariance matrix

Pa = (I−WH)B. (2.49)

Summarizing, we give the Optimal Interpolation equations

xa = xb + W
[
yo −H(xb)

]
= xb + Wd,

W = BHT (R + HBHT )−1,

Pa = (I−WH)B.

(2.50)

2.2 Three-Dimensional Variational Assimilation

In the beginning of the chapter, we saw that there is an equivalence between the optimal anal-
ysis of a scalar obtained by minimizing the analysis error variance (finding the optimal weights
in a least-squares sense) and the variational approach of the same problem (finding the analysis
that minimizes a specific cost function). In this chapter, we will see that the same equivalence
holds when the analysis involves a full three-dimensional field. In the Optimal Interpolation,
we found the optimal weight W that is minimizing the analysis error covariance matrix. Now
we deal with the following variational assimilation problem introduced by Lorenc in 1986, [21]:

Find the optimal analysis xa field that minimizes a (scalar) cost function of the state
x defined as the distance between x and the background xb, weighted by the inverse
of the background error covariance, plus the distance to the observations yo weighted
by the inverse of the observations error covariance:

2J(x) = (x− xb)TB−1(x− xb) + [yo −H(x)]TR−1[yo −H(x)]. (2.51)

We can define with the same way the likelihood of the true given a background state and the
observations, assuming that they have Gaussian statistics

LB(x||xb) = pB(xb|x) =
1

(2π)n/2 |B|1/2
exp

{
−1

2

[
(xb − x)TB−1(xb − x)

]}
, (2.52)

LR(x||yo) = pR(yo|x) =
1

(2π)p/2 |R|1/2
exp

{
−1

2

[[
yo −H(x)

]T
R−1

[
yo −H(x)

]]}
. (2.53)

The background and the observations are independent, therefore their joint probability is the
product of their probabilities. The most likely state, x, of the atmosphere maximizes the joint
probability (likelihood function) or the logarithm of the joint probability (log-likelihood func-
tion). As mentioned before, this process is the same as minimizing the cost function (2.51).

From a Bayesian point of view, the 3D-Var cost function can be derived (given the background
field) based on the assumption that the true field is a realization of a random process with prior
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probability distribution function:

pB(x) =
1

(2π)n/2 |B|1/2
exp

{
−1

2

[
(xb − x)TB−1(xb − x)

]}
. (2.54)

Bayes theorem gives the a posteriori probability distribution of the true field, given new obser-
vations, as

p(x|yo) =
pR(yo|x) pB(x)

p(yo)
. (2.55)

The Bayesian estimate of the true field is the one that maximizes the a posteriori probability.
Since the denominator does not depend on the current state x, the maximum of the a posteriori
probability is attained when the numerator is maximum or, as we saw earlier, when the cost
function (2.51) is minimized.

Returning to the 3D-Var cost function (2.51), the minimum is attained for x = xa when

∇xJ(xa) = 0. (2.56)

In order to find the minimum, assuming that the analysis is close to the truth and the obser-
vations, we linearize the observation operator H around the background value xb, using the
Taylor series expansion

yo −H(x) = yo −H[xb + (x− xb)] = [yo −H(xb)]−H(x− xb), (2.57)

where H is the matrix of the first-order partial derivatives hij = ∂Hi/∂xj .

Substituting into the cost function we have

2J(x) = (x− xb)TB−1(x− xb)

+
[
[yo −H(xb)]−H(x− xb)

]T
R−1

[
[yo −H(xb)]−H(x− xb)

]
= (x− xb)TB−1(x− xb)

+ [yo −H(xb)]TR−1[yo −H(xb)]− [yo −H(xb)]TR−1H(x− xb)

− [H(x− xb)]TR−1[yo −H(xb)] + [H(x− xb)]TR−1H(x− xb)

= (x− xb)TB−1(x− xb)

+ [yo −H(xb)]TR−1[yo −H(xb)]− [yo −H(xb)]TR−1H(x− xb)

− (x− xb)THTR−1[yo −H(xb)] + (x− xb)THTR−1H(x− xb).

Remark 2.2.1. Given a quadratic function F (x) = 1
2xTAx+dTx+c, where A is a symmetric

matrix, d is a vector and c is a scalar, it is easy to check that the gradient of F is given by
∇F (x) = Ax + d.

Since the cost function is a quadratic function of the analysis increments (x− xb), we can use
the remark above. The gradient of the cost function with respect to x (or (x− xb)) is

∇J(x) = B−1(x− xb) + HTR−1H(x− xb)−HTR−1[yo −H(xb)]. (2.58)

The equation ∇J(xa) = 0 is equivalent to[
B−1 + HTR−1H

]
(xa − xb)−HTR−1[yo −H(xb)] = 0.
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Solving for xa we obtain the 3D-Var analysis

xa = xb +
[
B−1 + HTR−1H

]−1
HTR−1[yo −H(xb)].

Therefore,

xa = xb + W[yo −H(xb)],

where W = [B−1 + HTR−1H]−1HTR−1.
(2.59)

Formally, this is the solution of the 3D-Var problem. In practice, however, the minimum of the
cost function J(x) is obtained using iterative algorithms such as the conjugate gradient or the
quasi-Newton methods.

Equivalence between OI and 3D-Var
We should note that the solutions of OI and 3D-Var are equivalent. Recall that the subject
treated in OI was to find the optimal weights that minimize the analysis error variance, while
in 3D-Var we wish to find the minimum of the cost function J(x). We will show that the weight
matrices of the two methods are in fact the same, i.e., that

W =
[
B−1 + HTR−1H

]−1
HTR−1 = BHT

[
R + HBHT

]−1
. (2.60)

We use the Sherman-Morrison-Woodbury formula

(A + UVT )−1 = A−1 −A−1U(I + VTA−1U)−1VTA−1, (2.61)

where A ∈ Rn×n and U,V ∈ Rn×k, to express in a different way the inverse matrices appearing
in (2.60) and prove the equality. For the weight matrix of the 3D-Var we have

W3D-Var =
[
B−1 + HTR−1H

]−1
HTR−1

=

[
B−BHTR−1

(
I + HBHTR−1

)−1
HB

]
HTR−1

=
[
B−BHTR−1HB−BHTR−1R(HT )−1B−1H−1HB

]
HTR−1

=
[
B−BHTR−1HB−B

]
HTR−1

= −BHTR−1HBHTR−1

and for the weight matrix of OI

WOI = BHT
[
R + HBHT

]−1
= BHT

[
R−1 −R−1HB

(
I + HTR−1HB

)−1
HTR−1

]
= BHT

[
R−1 −R−1HB

(
I + B−1H−1R(HT )−1

)
HTR−1

]
= BHT

[
R−1 −R−1HBHTR−1 −R−1HBB−1H−1R(HT )−1HTR−1

]
= BHT

[
R−1 −R−1HBHTR−1 −R−1

]
= −BHTR−1HBHTR−1.

Clearly, the two methods are equivalent since the corresponding weight matrices are identical.
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2.2.1 Application to the Lorenz-96 model

We proceed on the numerical implementation of the 3D-Var data assimilation for the Lorenz-96
model. We solve the system (1.3) using the classical fourth order Runge-Kutta scheme, which
gives

x(ti) = Mi−1[x(ti−1)],

where Mi−1 is the nonlinear model operator that propagates x(ti−1) to x(ti). The minimization
of the 3D-Var functional defined in (2.51) is carried out using the conjugate gradient method
and we perform 200 integration time-steps. The observations are generated from the truth with
an error εo ∼ N(0, σ2o), having covariance matrix R = E{εoεTo }.
The 3D-Var method has been coded in Matlab and is based on [19] and [31]. Assuming that
the background error covariance matrix B is constant, the errors of the day are not taken into
account. In our test cases we use as background error covariance matrix either B6h1 or Bloc
that have been both generated in [19]. These covariance matrices are tuned for a 6-hourly
observation frequency and observation errors εo with σo = 0.15σclim = 0.54. First, we present
results obtained using B6h1 and in the sequel results obtained using Bloc. The structure of
B6h1 is displayed in the following figures.
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Figure 2.1: Structure of the Background Error Covariance Matrix B6h1.

We assume that we have a perfect model and we consider two different observation networks,
each one of them tested for observational error εo that follows a zero-mean normal distribution,
i.e., εo ∼ N(0, σ2o), with standard deviation σo. The results presenting in the sequel correspond
to observational error with σo = 0.20 and are summarized in the following table.

Analysis RMSE for 3D-Var using B6h1

Network
Assimilation:

each time step every 5 time steps

1. observe all 1.3412 4.1616

2. observe every 2 4.0211 4.7868

Table 2.1: 3D-Var analysis RMSE results using B6h1 matrix and assuming εo ∼ N(0, σ2o) with
σo = 0.20.

In our simulations, the quality of the analysis estimate is measured by the root mean square
error (RMSE) of the difference between the true and the analysis states, defined as

RMSE =

√√√√ 1

N

N∑
i=1

(xti − xai )
2.
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In the first example, we consider the first observation network for observations containing error
εo ∼ N(0, σ2o), σo = 0.2, which are assimilated into our system at each integration step. In
Figure 2.2 we present the evolution in time of the first four components of the true state (green
line), the analysis estimate (dashed black line), as well as the available observations (red dots).
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Figure 2.2: 3D-Var for the Lorenz-96 model with observation network 1, σo = 0.20 and assimi-
lation performed at each time step.

For this particular setup, the analysis is a good estimate of the true state. Moreover, in Figure
2.3 we have plotted three elements: In the upper left corner, we present the analysis state
obtained after the assimilation compared to the true state, as well as the observations. In the
upper right corner, we have the absolute value of the analysis error plotted against the locations
at which we have observations. Finally, in the lower part, we present the evolution in time of
the analysis RMSE.
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Figure 2.3: 3D-Var for the Lorenz-96 model with observation network 1 and σo = 0.20. The
average analysis RMSE is 1.3412.
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In Figures 2.4 and 2.5 we present results obtained for the second observation network. As can
be seen, the analysis is trying to fit the true state in the components where there are available
observations but still, the estimate is not as good as in network 1.
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Figure 2.4: 3D-Var for the Lorenz-96 model with observation network 2, σo = 0.20 and assimi-
lation performed at each time step.
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Figure 2.5: 3D-Var for the Lorenz-96 model with observation network 2 and σo = 0.20. The
average analysis RMSE is 4.0211.

Looking at Figures 2.3 and 2.5, we observe that for a small observation error 3D-Var gives a
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good analysis estimate for the observation network 1, whereas in the case were observations
are taken every 2 sites, the RMSE is clearly higher. This phenomenon is expected because less
information about the true state translates to a poor analysis estimate.

So far, we have presented results of 3D-Var assimilation at each integration step. We consider
now that observations are assimilated into our system every 5 integration steps. In Figures 2.6
and 2.7 we have the results for the first observation network, while in Figures 2.8 and 2.9 the
results for the second network. In both cases, the analysis produced is not close to the true
state, causing a high analysis RMSE.
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Figure 2.6: 3D-Var for the Lorenz-96 model with observation network 1, σo = 0.20 and assimi-
lation performed every 5 integration steps.
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Figure 2.7: 3D-Var for the Lorenz-96 model with observation network 1 and σo = 0.20. The
average analysis RMSE is 4.1616.
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Figure 2.8: 3D-Var for the Lorenz-96 model with observation network 2, σo = 0.20 and assimi-
lation performed every 5 integration steps.
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Figure 2.9: 3D-Var for the Lorenz-96 model with observation network 2 and σo = 0.20. The
average analysis RMSE is 4.7868.

In the results presented so far, we assumed that the background error covariance had a specific
structure. The question arises whether we are able to obtain a better analysis estimate by
using another background error covariance. Therefore, we employ the matrix Bloc1, which is
also taken from [19] and is a matrix whose greater values in the main diagonal (variances)

1This matrix has been obtained by a LETKF (Local Ensemble Transform Kalman Filter) run for the same
setup as B6h1. Refer to [16] for a detailed description of the LETKF.
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are localized around the last 20 components. This is known as covariance localization and the
structure of Bloc is shown in Figure 2.10.
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Figure 2.10: Structure of the Background Error Covariance Matrix Bloc.

Once again, we consider the same observation networks, for σo = 0.20 and the results are
summarized in the following table.

Analysis RMSE for 3D-Var using Bloc

Network
Assimilation:

each time step every 5 time steps

1. observe all 0.2257 2.7451

2. observe every 2 1.5791 3.5467

Table 2.2: 3D-Var analysis RMSE results using Bloc matrix and assuming εo ∼ N(0, σ2o) with
σo = 0.20.

In Figures 2.11 and 2.12, where observations are available at each location and we have used
the localized background error covariance, 3D-Var gives a pretty small RMSE and the analysis
estimate coincides with the true state. In comparison with the analogous case using B6h1, the
error reduction is significant.
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Figure 2.11: 3D-Var for the Lorenz-96 model with observation network 1, σo = 0.20 and assim-
ilation performed at each time step.
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Figure 2.12: 3D-Var for the Lorenz-96 model with observation network 1 and σo = 0.20. The
average analysis RMSE is 0.2257.

We continue with the results for the second observation network, in Figures 2.13 and 2.14. As
can be seen, the analysis still fits very well the true state, not only at the observed components,
but at the unobserved as well.
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Figure 2.13: 3D-Var for the Lorenz-96 model with observation network 2, σo = 0.20 and assim-
ilation performed at each time step.

Now, if we take a look at the upper right element of Figure 2.14, we observe that the absolute
difference between the analysis and the true state is obvious smaller in the last 20 components.
This is due to the localization of the background error covariance around these components and
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moreover, we see that at the observation locations appearing in the same graph, the difference
is even smaller than at the intermediate unobserved locations.
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Figure 2.14: 3D-Var for the Lorenz-96 model with observation network 2 and σo = 0.20. The
average analysis RMSE is 1.5791.

Assuming now that observations are assimilated into our system every 5 integration steps for
the first observation network, we have the results presented in Figures 2.15 and 2.16. The
analysis here is a good estimate of the true, having an RMSE 2.7451. Only to compare the
results between the use of B6h1 and Bloc, we have to mention that the RMSE in the analogous
case using B6h1 was 4.1616.
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Figure 2.15: 3D-Var for the Lorenz-96 model with observation network 1, σo = 0.20 and assim-
ilation performed every 5 integration steps.
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Figure 2.16: 3D-Var for the Lorenz-96 model with observation network 1 and σo = 0.20. The
average analysis RMSE is 2.7451.

Considering now the second observation network for assimilation every 5 integration steps, we
present the results in Figures 2.17 and 2.18. For the observed components the analysis mimics,
in general, the behavior of the true state, while for the unobserved components the difference
is quite bigger.
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Figure 2.17: 3D-Var for the Lorenz-96 model with observation network 2, σo = 0.20 and assim-
ilation performed every 5 integration steps.
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Figure 2.18: 3D-Var for the Lorenz-96 model with observation network 2 and σo = 0.20. The
average analysis RMSE is 3.5467.

The conclusion of the examples presented in this section is that 3D-Var has limited ability in
finding an optimal analysis estimate. In fact, the choice of the background error covariance is
of great importance for the improvement of the 3D-Var estimates.

2.3 Four-Dimensional Variational Assimilation

The idea in 3D-Var was to rewrite the least-squares problem as a minimization of a cost function.
The Four-dimensional variational assimilation or 4D-Var is a simple generalization of 3D-Var
for observations that are distributed in time. This method seeks the initial condition such that
the forecast best fits the observations within the assimilation window.

The 4D-Var cost function includes a term measuring the distance to the background at the
beginning of the time interval, together with a sum accounting for the observations collected
over a k-hour time window:

J
[
x(t0)

]
=

1

2

[
x(t0)− xb(t0)

]T
B−10

[
x(t0)− xb(t0)

]
+

1

2

N∑
i=0

[
H(xi)− yoi

]T
R−1i

[
H(xi)− yoi

]
.

(2.62)

The control variable (i.e., the variable with respect to which the cost function is minimized) is
the initial state of the model with the time interval x(t0) and the analysis at the end of the
interval is given by the model integration from the solution x(tn) = Mn[x(t0)]. This means that
the analysis has to satisfy the model equations.

The 4D-Var functional can be written in the form J = Jb + Jo. Then, we proceed to the
minimization of the two individual functions. The first part,

Jb
[
x(t0)

]
=

1

2

[
x(t0)− xb(t0)

]T
B−10

[
x(t0)− xb(t0)

]
, (2.63)
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is the background component of the cost function and its gradient with respect to x(t0) is

∂Jb
∂x(t0)

= B−10

[
x(t0)− xb(t0)

]
. (2.64)

The second part is the observation component

Jo
[
x(t0)

]
=

1

2

N∑
i=0

[
H(xi)− yoi

]T
R−1i

[
H(xi)− yoi

]
(2.65)

and it is more complicated because of the nonlinear xi = Mi[x(t0)].
As we saw previously in Remark 2.2.1, given a symmetric matrix A and a quadratic functional
J(x) = xTAx, its gradient is given by ∂J/∂x = Ax. If the functional is J(x) = zTAz and
z = z(x), then the gradient is given by

∂J

∂x
=

[
∂z

∂x

]T
Az, where

[
∂z

∂x

]
k,l

=
∂z

k

∂x
l

. (2.66)

In our case, we have to compute the gradient of z = H(xi) − yoi with respect to x(t0). We
begin from the nonlinear xi = Mi[x(t0)] and we introduce a perturbation to the initial state.
Then, the linearized form is δxi = L(t0, ti) δx0, where L(t0, ti) is the tangent linear model (see
Definition 2.3.1) that advances the initial perturbation from t0 to ti.

Definition 2.3.1. A tangent linear model (TLM) is obtained by linearizing the model
about the nonlinear trajectory of the model between ti−1 and ti. So, if we introduce a
perturbation in the initial conditions then, the final perturbation is

x(ti) + δx(ti) = Mi−1[x(ti−1) + δx(ti−1)] = Mi−1[x(ti−1)] + Li−1δx(ti−1) +O(|δx|2).

where Li−1 is the TLM that transforms the initial perturbation at time ti−1 to the final
time ti. Therefore, the TLM expression is δx(ti) = Li−1 δxti−1 . If there are several steps
in a time interval [t0, ti], the TLM that advances a perturbation from t0 to ti is given by
the product of the TLM matrices that advance it over each step:

L(t0, ti) =

0∏
j=i−1

L(tj , tj+1) =

0∏
j=i−1

Lj = Li−1Li−2. · · ·L0.

Moreover, the adjoint model i.e., the transpose of the tangent linear model, is given by

LT (ti, t0) =
i−1∏
j=0

LT (tj+1, tj) =
i−1∏
j=0

LTj = LT0 LT1 · · ·LTi−1,

which means that the adjoint model “advances” a perturbation backward in time, from the
final to the initial time.

Therefore, the gradient of H(xi)− yoi with respect to x(t0) can be written as

∂[H(xi)− yoi ]

∂x(t0)
=
∂H

∂xi

∂M

∂x0
= Hi L(t0, ti) = Hi

0∏
j=i−1

L(tj , tj+1), (2.67)
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where Hi and Li are the linearized Jacobian matrices ∂H/∂xi and ∂M/∂x0, respectively. Hence,
using (2.66) and (2.67), the gradient of the observation component is

∂Jo
∂x(t0)

=
N∑
i=0

LT (ti, t0)H
T
i R−1i [H(xi)− yoi ]. (2.68)

Finally, the total gradient of the 4D-Var functional is given by

∂J

∂x(t0)
= B−10

[
x(t0)− xb(t0)

]
+

N∑
i=0

LT (ti, t0)H
T
i R−1i [H(xi)− yoi ]. (2.69)

We wish to find the minimum of the cost function and as we have mentioned before, this can be
done using an iterative minimization algorithm. At this point, we must note that the gradient
of the observation component in (2.68) shows that every iteration of the 4D-Var minimization
requires the computation of the gradient. Thus, every iteration implies that we must compute
the increments [H(xi)− yoi ] at the observation times ti during a forward integration. Then, we
have to multiply them by HT

i Ri, and finally, integrate the resulting weighted increments back
to the initial time, using the adjoint model.
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Chapter 3

Kalman Filtering

Kalman Filtering (KF) is a sequential technique for estimating the state of a dynamical system
from a set of noisy measurements. The measurements need not be those of the state variables
themselves, but must be related to them through a functional that can be linearized. The filter
is named after Rudolf E. Kalman, who, in 1960, published his now famous article describing a
recursive solution to the discrete-data linear filtering problem [17].
The Kalman filter is optimal, in the sense that it minimizes the variance of the estimate’s error,
for linear models with additive independent white noise in both the model and the measurement
systems. Although it was designed for linear problems, a new version was soon discovered,
known as the Extended Kalman Filter (EKF), which has been used ever since for nonlinear
applications of Kalman filtering.
In meteorology, Kalman filters are widely used to improve the prediction of the variables of
interest. Actually, most of the times in NWP models both the observation operator H and
the forward model M are nonlinear. Therefore, we focus on the Extended version. As seen in
the sequel, these operators can be linearized using Taylor series expansions around the current
predicted state.

3.1 Extended Kalman Filter

In the sequential data assimilation at time ti we have at our disposal the outcome of a previous
forecast, denoted by xf (ti). Therefore, xf (ti) is the analogue of the background xb found in
Optimal Interpolation. At time ti we collect a set of observations which are arranged into the
vector yoi . Given the forecast xf (ti) and the observations yoi , we perform an analysis to obtain
the state estimate xa(ti). Then, we advance xa(ti) from time ti to ti+1 using the model dynam-
ics and create the new forecast at time ti+1, denoted by xf (ti+1). The last one will serve as the
background in the next cycle, and we continue the same process iteratively.
Although, the Kalman filter algorithm is very similar to Optimal Interpolation, there is a main
difference: in OI we assume that the background error covariance B is a constant matrix, while
in KF we update the forecast error covariance Pf (ti) at every forecast step using the model.

The forecast state is advanced from the previous analysis time ti−1 to the current time ti,
through the nonlinear forecast model

xf (ti) = Mi−1[x
a(ti−1)]. (3.1)

In the sequel of Kalman Filtering, our basic assumption is that the errors involved in the esti-
mates and the observations are following zero-mean normal distributions.
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The model may not be perfect, therefore we assume that the true state of the atmosphere is
given by

xt(ti) = Mi−1[x
t(ti−1)] + η(ti−1), (3.2)

where η(ti−1) is a zero-mean noise process with covariance matrix Qi−1 = E{ηi−1ηTi−1}, where
ηi−1 = η(ti−1).

The forecast error covariance can be obtained by linearizing the model about the nonlinear tra-
jectory, between two consecutive time-steps ti−1 and ti. Therefore, we introduce a perturbation
δx(ti) in the initial conditions and we have

x(ti) + δx(ti) = Mi−1[x(ti−1) + δx(ti−1)]

= Mi−1[x(ti−1)] + Li−1δx(ti−1) +O(|δx|2), (3.3)

where L is the tangent linear model, i.e., the matrix which transforms the initial perturbation
at time ti−1 to the final perturbation at time ti.
Once again, we assume that the observations contain errors with zero mean and error covariance
matrix Ri = E{εoiεoi T } and are given by

yoi = H[xt(ti)] + εoi , (3.4)

where H is the (nonlinear) observation operator.

The error over a forecast period depends on the initial error and the errors arising from the
forecast model. Using (3.1) and (3.2), we have

εfi = xt(ti)− xf (ti)

= Mi−1[x
t(ti−1)] + η(ti−1)−Mi−1[x

a(ti−1)]

= Mi−1[x
a(ti−1) + xt(ti−1)− xa(ti−1)] + η(ti−1)−Mi−1[x

a(ti−1)]

≈((((((((
Mi−1[x

a(ti−1)] + Li−1ε
a
i−1 + η(ti−1)−((((((((

Mi−1[x
a(ti−1)],

where the last expression is the result of a first-order Taylor series expansion around xa(ti−1)
neglecting higher order terms. Therefore, we arrive in the equation

εfi ≈ Li−1ε
a
i−1 + ηi−1. (3.5)

Assuming that the forecast error εfi has mean zero, we continue with the derivation of the
forecast error covariance matrix, which is given by:

Pf (ti) = E

{
εfi ε

f
i

T
}

= E
{

(Li−1ε
a
i−1 + ηi−1)(Li−1ε

a
i−1 + ηi−1)

T
}

= E
{

(Li−1ε
a
i−1 + ηi−1)(ε

a
i−1

TLTi−1 + ηTi−1)
}

= E
{

Li−1ε
a
i−1ε

a
i−1

T LTi−1 + Li−1ε
a
i−1η

T
i−1 + ηi−1ε

a
i−1

T LTi−1 + ηi−1η
T
i−1

}
= Li−1 E{εai−1εai−1T } LTi−1 + Li−1 E{εai−1ηTi−1}+ E{ηi−1εai−1T } LTi−1 + E{ηi−1ηTi−1}.

The terms that contain the expected value of the model and the analysis errors are zero since
they are uncorrelated. Moreover, the term E{εai−1εai−1T } is actually the analysis error covari-
ance matrix Pa(ti−1) at time ti−1 (as defined in (2.43)) and can be derived as in OI.
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Therefore,

Pf (ti) = Li−1 Pa(ti−1) LTi−1 + Qi−1. (3.6)

After completing the forecast step at time ti, the innovation vector is

di = yoi −H[xf (ti)]

= yoi −H[xt(ti) + xf (ti)− xt(ti)]

= yoi −H[xt(ti)]−Hi[x
f (ti)− xt(ti)]

= εoi −Hiε
f
i .

(3.7)

Moreover, the optimal weight matrix or Kalman gain Ki, that minimizes the analysis error
covariance Pa

i , can be found following the same process as in OI for the computation of (2.46).

K = E
{

(xt − xf )[yo −H(xf )]T
}[

E
{

[yo −H(xf )][yo −H(xf )]T
}]−1

= E
{

(−εf )[εo −Hεf ]T
}[

E
{

[εo −Hεf ][εo −Hεf ]T
}]−1

= E
{
−εf (εo)T + εf (εf )THT

}[
E
{
εo(εo)T − εo(εf )THT −Hεf (εo)T + Hεf (εf )THT

}]−1
= E

{
εf (εf )T

}
HT +

[
E
{
εo(εo)T

}
+ H E

{
εf (εf )T

}
HT

]−1
= Pf HT

[
R + H Pf HT

]−1
.

Thus, the Kalman gain, after completing the forecast step i, is given by

Ki = Pf (ti) HT
i

[
Ri + Hi Pf (ti) HT

i

]−1
. (3.8)

The analysis state and its error covariance can be written as in OI, using the calculated Pf (ti)
and Ki matrices, instead of B and W, respectively.

Therefore, we have that

xa(ti) = xf (ti) + Ki

[
yoi −H[xf (ti)]

]
, (3.9)

Pa(ti) = (I−KiHi)P
f (ti). (3.10)

Under the assumption of normally distributed errors, xa given by (3.9) is the mean value of the
distribution of the true state xt at time ti, which means that it is the optimal estimate of the
state.

We summarize the recursive algorithm of the Extended Kalman Filter consisting of two steps:
the “forecast step” that advances the forecast state and its error covariance matrix and the
“analysis step” that updates the analysis state and the corresponding error covariance.
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Extended Kalman Filter Algorithm

1. Input

System state xa(t0) = x0 and error covariance matrix Pa(t0) = P0.

2. For i = 1, 2, . . .

• Forecast Step:

xf (ti) = Mi−1[xa(ti−1)]

Pf (ti) = Li−1P
a(ti−1)LT

i−1 + Qi−1

• Analysis Step:

Ki = Pf (ti)H
T
i

[
Ri + Hi Pf (ti) HT

]−1

xa(ti) = xf (ti) + Ki

[
yo
i −H[xf (ti)]

]
Pa(ti) = [I−KiHi] P

f (ti)

A great property of the Extended Kalman Filter is that, even if a system starts with a poor
initial guess of the state of the atmosphere, the EKF may go through a transient period, after
which it should provide the best linear unbiased estimate of the state and its error covariance.
However, there are limitations in its application. The error propagation is approximated by
the tangent linear model between two analysis steps. Therefore, if the time-step between two
consecutive updates is long enough and in combination with infrequent observations, it may
lead to a coarse approximation of the forecast error covariance and hence, to the divergence of
the filter. Another problem is the computational cost of the EKF in high-dimensional problems.
The TLM matrix Li−1 has size n, i.e., the number of degrees of freedom of the model (in modern
models it is more than 106) and the update of the error covariance is equivalent to performing
O(n) model integrations.

3.2 Ensemble Kalman Filtering

The propagation of the covariance information is the main feature of the Kalman Filter. It is
also its main challenge since the matrices Pf and Pa have dimension n × n, which for large
n, their computation time and storage may not be feasible. Therefore, the key is to find a
reasonable approximation of these covariance matrices with less computational cost. This leads
to the Ensemble Kalman Filter (EnKF), a simplification of the standard Kalman filtering, first
introduced by Evensen in [7]. It has gained popularity because of its simple implementation. It
does not require the derivation of the tangent linear operator or integrations backward in time.
It is an approximation of the EKF which avoids evolving the error covariance matrix at every
time step. Instead, an ensemble of K data assimilation cycles is used to estimate the forecast
uncertainty. The goal of an EnKF is to generate an analysis ensemble which reflects both an es-
timate of the true atmospheric state (through its mean) and its uncertainty (through its spread).

Each ensemble member evolves independently from the others according to the forecast model.
When new observations become available, the entire ensemble is adjusted in order to take into
account both the new state estimate and the uncertainty dictated by the observations. This
adjustment indicates the analysis step of the algorithm. Therefore, the analysis ensemble mean
is formed as a weighted average of the forecast (or background) ensemble mean and the obser-
vations, where the weights are determined from the background and observation uncertainties.
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We start with an ensemble {xak, k = 1, . . . ,K} consisting of K members at time ti−1, where each
member is an n-dimensional model state vector. Evolving each ensemble member according to
the nonlinear forecast model

xfk(ti) = Mi−1[x
a
k(ti−1)], k = 1, . . . ,K, (3.11)

we obtain the forecast ensemble xfk(ti) at time ti.

The analysis assumes that the best available estimate to the system state, before the observa-
tions are taken into account, is the background ensemble mean

xf =
1

K

K∑
k=1

xfk . (3.12)

We define the background ensemble perturbations matrix Xf , whose k-th column is defined as
(xfk − xf )/

√
K − 1, k = 1, . . . ,K, i.e.,

Xf =
1√

K − 1

(
xf1 − xf , . . . ,xfK − xf

)
. (3.13)

Then, the uncertainty in the state estimate is described by the background error covariance
matrix

Pf = Xf (Xf )T . (3.14)

The analysis must determine a state estimate xa, an error covariance matrix Pa and an ensemble
{xak, k = 1, . . . ,K} with sample mean

xa =
1

K

K∑
k=1

xak. (3.15)

and covariance matrix

Pa = Xa(Xa)T , (3.16)

where Xa is the n×K matrix of the analysis ensemble perturbations, defined as

Xa =
1√

K − 1
(xa1 − xa, . . . ,xaK − xa) . (3.17)

Filters that use perturbed observation ensembles (i.e., the perturbed observations ensemble is
created by adding random vectors to the actual observations for each member) such as the
EnKF, are known as Stochastic filters, whereas those that do not use perturbed observations
are known as Deterministic filters. In the sequel, we consider the deterministic filter, also called
Ensemble Square Root Kalman Filter (EnSRF).

Based on the analysis step (equations (3.8) to (3.10)) of the standard Kalman Filter, the analysis
ensemble mean should satisfy the equation

xa = xf + K[yo −H(xf )], (3.18)

where K is the ensemble Kalman Gain. This is because the background ensemble error covari-
ance matrix Pf is an approximation of the full background error covariance, defined as

K = Xf (Xf )THT
[
R + HXf (Xf )THT

]−1
. (3.19)
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Despite the fact that EnKF has a simpler implementation than the EKF algorithm, a main
question is how to update the ensemble in the analysis step. We wish to determine an ensemble
which approximates the analysis error covariance Pa, given an ensemble which approximates the
background error covariance Pf . Substituting the equations (3.14) and (3.19) into the standard
formula (3.10) for the analysis error covariance, we have

Pa = [I−KH] Pf (3.20)

=

[
I−Xf (Xf )THT

[
R + HXf (Xf )THT

]−1
H

]
Xf (Xf )T (3.21)

= Xf

{
I− (Xf )THT

[
R + HXf (Xf )THT

]−1
HXf

}
(Xf )T . (3.22)

Let T denote the term in the curly brackets, i.e.,

T = I− (Xf )THT
[
R + HXf (Xf )THT

]−1
HXf . (3.23)

T is a Hermitian positive-definite matrix therefore, there exists a unique matrix S, such that
T = SST . Using the decomposition of T, we write the analysis error covariance as

Pa = XfT(Xf )T = XfSST (Xf )T , (3.24)

which leads to the conclusion that the analysis ensemble is given by

Xa = XfS, (3.25)

since it is the square root matrix of Pa, as defined in (3.16). This formulation is the so called
Ensemble Square Root Kalman Filter.

The approximation of the error covariance matrix can be based on an arbitrary chosen ensemble
of vectors in the model space. It can be shown, however, that the optimal error for this approxi-
mation can be achieved if the centered ensemble (i.e, the ensemble from which its mean value is
subtracted) spans the space of the K − 1 maximal eigenvectors of the given background covari-
ance Pf . A detailed discussion on the error estimate of the analysis covariance approximation,
dependent on the background covariance, is given in section 8 of [10].

3.2.1 Application to the Lorenz-96 model

We have implemented the Ensemble Square Root Kalman Filter for the Lorenz-96 model. We
are going to examine some EnSRF cases by considering two of the observation networks defined
in the examples in section 2.2.1. Therefore, the observation networks are: (1) observe all and
(2) observe every 2 sites. In order to understand why data assimilation methods are so bene-
ficial, we begin by presenting a no-assimilation run in Figure 3.1. For this particular example,
we have used the forcing term F = 8 in the model and the true state. 40 ensemble members
are integrated from the same initial conditions for 100 time steps. As already explained in the
introduction, in section 1.2, the forcing term F = 8 is a value causing chaotic behavior of the
model.

In Figure 3.1, both the truth state (green line) and the ensemble members (black lines) are
propagated in time from the same initial conditions. After a short number of steps the evolution
of the ensemble members is chaotic. This is due to the fact that the system is chaotic for F = 8.
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Figure 3.1: No-assimilation run (integration in time) of the Lorenz-96 model.

Now, an assimilation cycle is carried out in Figure 3.2. Each member evolves independently,
until the observation becomes available. Then, the EnSRF adjusts the ensemble in order to
reflect both the new state estimate and the uncertainty dictated by the observation. After the
observation has been assimilated, the ensemble is integrated for 50 more time steps and we can
see that the ensemble members gradually spread around the true state. Thus, the effect of the
assimilation is limited to a short period after the incorporation of the observations.
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Figure 3.2: A single EnSRF analysis step. The truth state (green line) and the ensemble
members (black lines) are propagated in time from the same initial condition. As soon as the
observation (red dot) becomes available, the ensemble is adjusted to fit the data and give a
better estimate of the true state.

In Figure 3.3, we have carried out more assimilation cycles. When observations are available
more often, we observe that the EnSRF produces an analysis estimate that is closer to the
truth. Therefore, we have to find an appropriate number of time steps so that the assimilation
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is performed as often as needed to keep the analysis close to the truth without forcing the
solution.
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Figure 3.3: Four EnSRF cycles have been completed with 50 intermediate integration steps
between the assimilations.

3.2.1.1 Case study I

In our first study case, we consider an ensemble of 10 members and observations at each site,
available every 50 time-steps with observation error εo ∼ N(0, σ2o) having σo = 0.20. In Figure
3.4 we present the evolution in time of the first four components of the true state, the ensemble
members and their mean, as well as the available observations.
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Figure 3.4: EnSRF for the Lorenz-96 with K = 10, observation network 1 and σo = 0.20.

The size of the ensemble in these assimilation methods is crucial and must adequately represent
the model state. It has been shown that when the number of the ensemble members is small
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compared to the size of the model state, the forecast and analysis estimates are less accurate.
The accuracy of the forecast estimates can be analyzed by calculating the root mean square
error between the true state and the forecast or analysis ensemble mean estimates.

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

Time

R
M

S
E

RMSE of x
t
− xens

Figure 3.5: EnSRF analysis RMSE results for K = 10, observation network 1 and σo = 0.20.
The mean value of the RMSE is 3.7362.

We consider now the same test case for an ensemble of 40 members to examine how the ensemble
size effects the analysis estimate. In Figure 3.6 we observe that the ensemble mean is a better
estimate of the true state compared to the results in Figure 3.4.
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Figure 3.6: EnSRF for the Lorenz-96 with K = 40, observation network 1 and σo = 0.20.

Comparing now the Figures 3.5 and 3.7, we see that the RMSE is smaller in the latter case, as
expected from the theory. Moreover, when each observation is incorporated into the estimate,
we have a significant reduction of the error.

41



0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

Time

R
M

S
E

RMSE of x
t
− xens

Figure 3.7: EnSRF analysis RMSE results for K = 40, observation network 1 and σo = 0.20.
The mean value of the RMSE is 2.1170.

We can further improve our estimates by applying covariance inflation. This technique is used
for correcting the undersampling problem (a common issue of the ensemble Kalman filtering),
which appears when the size of the ensemble is so small that it cannot be statistically represen-
tative of the true model state.

The idea is to increase the forecast error covariances by inflating the deviation of the background
error from the ensemble mean by a percentage. Before the assimilation of a new observation,
we can multiply the analysis error covariance by a factor γ. This is known as the multiplicative
error covariance inflation factor and is normally chosen to be slightly greater that 1.0. The
optimal multiplicative inflation factor may vary according to the ensemble size and after some
experiments it has been found in [39] to be 7% of the ensemble size for the EnKF algorithm
and 3% for the EnSRF.

Except from the multiplicative inflation factor γ, it is also possible to use an additive forecast
error covariance inflation factor. In forecast step, when forming the forecast error covariance
matrix Pf = XXT , we can add the identity matrix multiplied by a small positive constant `,
i.e., Pf = XXT + ` I, where I has the same dimension as Pf .

If we do not use some kind of inflation, the spread of the ensemble will be too small to take
into account the difference between the truth and the ensemble. In our test cases we use both
multiplicative and additive covariance inflation, with values γ = 1.2 and ` = 0.05, and we have
the following results.
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Figure 3.8: EnSRF for the Lorenz-96 with K = 40, observation network 1, σo = 0.20, inflation
factors γ = 1.2 and ` = 0.05.
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Figure 3.9: EnSRF analysis RMSE results for K = 40, observation network 1, σo = 0.20 and
inflation factors γ = 1.2 and ` = 0.05. The mean value of the RMSE is 1.5941.

Observing the Figures 3.6 and 3.9, we conclude that the ensemble mean is a better estimate
of the true state when covariance inflation is applied, causing the RMSE to be reduced from
2.1170 to 1.5941.

3.2.1.2 Case study II

In the previous examples, we assumed that both the true and the ensemble are propagating in
time through the same model dynamics, i.e., we assumed a perfect forecast model. In general
this is not the case, so we are going to assume now that the forecast model is slightly different
from the true. We assume that the true model has a forcing term F = 8, while the forecast
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model has F = 8.2. Considering an ensemble of 40 members and observations available at each
location with σo = 0.20, we compare the results obtained with and without the use of inflation.
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Figure 3.10: EnSRF for the Lorenz-96 with K = 40, observation network 1, σo = 0.20 and
forecast model with forcing term F = 8.2.
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Figure 3.11: EnSRF for the Lorenz-96 with K = 40, observation network 1, σo = 0.20, assuming
a forecast model with forcing term F = 8.2 and inflation factors γ = 1.2 and ` = 0.05.
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Figure 3.12: EnSRF analysis RMSE results for K = 40, observation network 1, σo = 0.20,
assuming a forecast model with forcing term F = 8.2. In the left plot we do not use inflation,
while in the right plot the inflation factors are γ = 1.2 and ` = 0.05.

In the presence of covariance inflation, the RMSE appears to have smaller peaks between the
assimilations, resulting an error reduction from 2.2908 (no inflation) to 1.7857 (inflation).

3.2.1.3 Case study III

We consider now an example using an ensemble of 40 members but now we assume that the
observations become available at every two sites and therefore, we expect that the analysis
estimate will be less accurate on the unobserved variables.
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Figure 3.13: EnSRF for the Lorenz-96 with K = 40, observation network 2 and σo = 0.20.

In Figure 3.13 we observe that the ensemble members do not follow the true state after the
assimilation of each observation. This is due to the fact that the observations are available only
on half of the sites. For the unobserved sites, their evolution in time depends only on the model
dynamics and thus, their behavior is almost chaotic.
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Figure 3.14: EnSRF for the Lorenz-96 with K = 40, observation network 2 and σo = 0.20.
Evolution in time of the 13th and 26th components, which are observed and unobserved respec-
tively.

The evolution in time of an observed and an unobserved component of the model state is shown
in Figure 3.14. As can be seen, the ensemble mean is not a good estimate of the true state,
which is an almost expected behavior of the analysis, since we have less information about the
behavior of the actual model state. The RMSE of the estimate is plotted against time in the
figure below. The error’s behavior is quite different from the previous test case, in which, after
the assimilation of the observations there was a significant error reduction.
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Figure 3.15: EnSRF analysis RMSE results for K = 40, observation network 2 and σo = 0.20.
The mean value of the RMSE is 3.2396.

So far we have presented different test cases of 3D-Var and EnSRF for the Lorenz-96 model. We
conclude that in 3D-Var the constant background error covariance must be tuned properly to
receive improved estimates. In the EnSRF, it is important to choose an appropriate ensemble so
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that the ensemble covariance will be a good approximation of the error covariance matrix. An
important restriction of the Ensemble Kalman filtering is the size of the ensemble, due to com-
putational requirements of maintaining a large ensemble. The success of the ensemble methods
depends on how well the ensemble represents the model state. If the ensemble is so small that
it cannot statistically represent the system, then we have undersampling and the filter produces
poor estimates. A solution to the underestimation problem is the covariance inflation method
and the choice of the inflation factor depends on the type of the ensemble filter that we use.
In the appendix there can be found results of additional test-cases concerning these assimilation
methods for the Lorenz-96 model.
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Chapter 4

Weather Research and Forecasting
Model

The Weather Research and Forecasting Model (WRF-Model) is a state-of-the-art atmospheric
modeling system which serves for both atmospheric research and operational forecasting needs.
The development of the WRF began in the latter part of the 1990’s as a collaboration among the
National Center for Atmospheric Research (NCAR)1, the National Oceanic and Atmospheric
Administration (NOAA), the Air Force Weather Agency (AFWA), the Naval Research Labora-
tory, the University of Oklahoma and the Federal Aviation Administration.
It offers many options for atmospheric physical processes and is suitable for a broad range of
applications, including the following: real-time NWP, idealized atmospheric simulations, data
assimilation research, hurricane research, coupled-model applications, regional climate research,
forecast search, modeling training.
There are two dynamical solvers available for the resolution of the atmospheric governing equa-
tions, and the variants of the model are known as WRF-ARW (Advanced Research WRF) and
WRF-NMM (Nonhydrostatic Mesoscale Model). The WRF-ARW is provided by the NCAR
Mesoscale and Microscale Meteorology Division (MMM Division). The WRF-NMM is provided
by the Developmental Testbed Center (DTC) developed at the National Centers for Environ-
mental Prediction (NCEP).
The main components of the WRF modeling system are the WRF Preprocessing System (WPS),
the WRF Data Assimilation system (WRFDA), the WRF core (solver) and the Post-processing
and Visualization tools. For a detailed description of each component refer to the official WRF
technical report [32].

4.1 WRF Data Assimilation

The main objective of the WRF partners in 1999-2001 was to develop a unified community
data assimilation system characterized by: robustness, accuracy, computational efficiency, flex-
ibility, equipped with an adequate support and documentation, while at the same time it had
to be easy to use. As a starting point, the initial WRF data assimilation system was based on
the the community fifth-generation Pennsylvania State University–National Center for Atmo-
spheric Research Mesoscale Model (MM5) 3DVAR system (for a detailed description refer to [3]).
Therefore, the first version of the WRF data assimilation component included an incremental
3D-Var algorithm and for that reason, it was named as WRF3DVar. Later, a 4D-Var assimi-

1The NCAR was represented by the National Centers for Environmental Prediction (NCEP) and the (then)
Forecast Systems Laboratory (FSL).
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lation scheme was included and the name was changed to WRF-VAR. Similarly, in 2008 after
the release of a hybrid variational/ensemble method the component was renamed to WRFDA,
which prevails even today.

WRFDA can be used to ingest observations into the interpolated analyses created by the Pre-
processing system but also, it can used to update WRF model’s initial conditions when the
WRF model is run in cycling mode. It is based on an incremental variational data assimilation
technique and supports both 3D-Var and 4D-Var methods. It also has the capability of hybrid
data assimilation that combines the benefits of the variational approach with the statistical,
flow-dependent error information provided by the ensemble forecasts.

The various components of the WRFDA system are shown in blue in the sketch below, together
with their relationship with the rest of the WRF Modeling system. The circles that are directly
linked to the WRFDA box represent the datasets involved in the WRFDA process, while the
remaining boxes correspond to the algorithms of the ARW system.

Figure 4.1: Sketch showing the relationship between the components of WRFDA and the rest
of the WRF system. Source: This diagram has been taken from the original WRFDA docu-
mentation [32].

The variables shown in Figure 4.1 represent:

xb the first guess, either from a previous WRF forecast or from WPS/real.exe output.
xlbc the lateral boundary from WPS/real.exe output.
xa the analysis provided by the WRFDA data assimilation system.
xf the WRF forecast output.
yo the observations processed by the OBSPROC utility.
B0 the background error statistics from generic BE data (CV3) or gen be.
R the observational and representative error statistics.
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As can be seen in Figure 4.1, the WRFDA needs three inputs:

A first guess xb. In cold-start mode, this is typically a forecast/analysis from another
model provided by the Preprocessing system. Its functions are respon-
sible for defining the simulation domain and interpolating forecast fields
from another models to the target domain. In cycling or warm-start
mode, the background processing is not required as the background
field xb is a short-range ARW forecast provided from the previous step.

Observations yo. Observation data may be supplied using the Observation Pre-processing
“obsproc” utility. The purpose of this utility is to remove observations
outside the specified time and spacial domains, re-order and merge du-
plicate data reports, retrieve pressure or height based on observed infor-
mation using the hydrostatic assumption, perform basic quality control,
assign the total observation errors and covariances R and finally, refor-
mat the observations to the 3D-Var format.

A Background error
covariance B.

For the appropriate definition of the background error covariance, the
code is supplied with the utility “gen be”. The specification of the
background error covariance is crucial for the final analysis obtained by
the assimilation, therefore we discuss the main aspects of this utility in
section 4.2.

In Figure 4.1, there are two parts that have not been discussed so far: the Lateral and Low
Boundary Conditions update processes, which are both included in the UPDATE BC utility
supplied with WRFDA. When using the WRFDA output (i.e., the analysis xa) to run a WRF
forecast, it is essential to update the WRF lateral boundary conditions xlbc so that they match
to the new WRFDA initial condition (analysis). The lateral BCs update procedure, as seen in
the WRFDA Flow Figure 4.1, requires the WRFDA analysis state xa and the lateral boundaries
xlbc provided by the WPS/real preprocessing (in the file wrfbdy 01 ). However, in a global run,
the lateral boundary conditions are no longer needed since the simulation domain covers the
entire globe. In cycling mode (warm-start), the lower boundary conditions in the first guess file
also need to be updated based on the information from the WRFINPUT file which is generated
by the WPS/real at analysis time.

The WRF 3DVar system
The WRF 3DVar system aims to produce an optimal estimate of the true atmospheric state at
analysis time through the minimization of a prescribed cost function:

J(x) = Jb(x) + Jo(x) =
1

2
(x− xb)TB−1(x− xb) +

1

2
(y − yo)T (E + F)−1(y − yo). (4.1)

The solution x, obtained by the minimization of (4.1), represents the a posteriori maximum
likelihood (minimum variance) estimate of the true state of the atmosphere given two sources
of a priori data: the first guess xb and the observations yo. The fit to individual data points is
weighted by the estimates of their errors: B,E and F are the background, observation and rep-
resentativity error covariance matrices, respectively. Recalling the 3D-Var functional (2.51), we
observe a different formulation of Jo(x). The representativity error is an estimate of inaccuracies
introduced in the observation operator H that is used to transform the gridpoint analysis x to
the observation space y = H(x) for comparison against the observations. Therefore, defining a
total observational operator R = E + F the two formulations are, in fact, identical.
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The 3D-Var algorithm adopted in WRFDA is a model-space, incremental formulation of the
variational problem and the original description can be found in [4]. Assuming a model state x
with n degrees of freedom, the calculation of the full background term Jb(x) requires ∼ O(n2)
calculations. For a typical NWP model with n2 ∼ 1012 direct solution is not feasible in the
time frame needed for data assimilation in operational applications. A practical solution in
this problem is to calculate the Jb(x) in terms of control variables defined as x′ = Uv where
x′ = x−xb is the analysis increment. The transformation U permits the use of efficient filtering
techniques that approximate the full background error covariance matrix. Moreover, if U is
well designed, the product UUT will closely match the full background error covariance matrix
B. The 3D-Var functional in terms of analysis increments can be rewritten as

J(v) = Jb + Jo =
1

2
vTv +

1

2
(yo′ −HUv)T (E + F)−1(yo′ −HUv), (4.2)

where yo′ = yo −H(xb) is the innovation vector and H is the linearization of the observation
operator H. The minimization of this incremental functional is carried out using a conjugate
gradient method yielding the analysis increments x′, which are added to the first guess xb to
provide an updated analysis.

4.2 Background Error Covariance Estimates

The background error covariances (BE) are an important input to variational data assimilation
systems. They influence the analysis fit to the observations and also they define the analysis
response away from the observations, e.g., in cases of data-sparse regions.
Unlike the ensemble techniques, the variational DA methods do not explicitly evolve the back-
ground error covariances in real-time. Instead, climatological statistics are usually approximated
by either using ensemble perturbations or using the “National Meteorological Center (NMC)
method” (introduced in [9] and [30], respectively). The NMC method has been adopted by the
most NWP centers for estimating the forecast error covariance using the difference x′ between
forecasts valid at the same time.

The WRFDA system includes the “gen be”utility that has been designed by NCAR/MMM for
the calculation of domain-specific climatological estimates of forecast error covariances, instead
of using the default statistics2 supplied within the release. The background error covariance is
defined as

B = E
{
εbε

T
b

}
≈ E

{
x′x′

T
}

(4.3)

where the expected value indicates an average over time or geographical area. The true back-
ground in unknown, therefore it is assumed that it is well represented by the model state
perturbation x′. In the NMC method, x′ is the difference between short-range forecasts, e.g.,
x′ = xf (24h)−xf (12h) for typical regional applications or x′ = xf (48h)−xf (24h) for global ap-
plications, valid at the same time. Alternatively, for an ensemble-based approach, x′k = xk −x,
where the overbar denotes the average over the k = 1, . . . ,K ensemble members. Both methods
can be used by gen be utility for the approximation of the background error covariance.

Regarding the 3D-Var formulation within the WRFDA, the background error covariances are
specified not in the model space x′ but in a control variable space v, which is related to the

2The WRFDA system provides default synoptic-scale climatological forecast error statistics for initial setup,
testing and training simulations.
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model space through the control variable transform U, i.e.,

x′ = Uv = UpUvUhv.

The expansion U = UpUvUh represents the various stages of the covariance modeling: horizon-
tal correlations Uh, vertical covariances Uv and multivariate covariances Up. The components
of v are chosen so that their error cross-correlations are negligible, permitting the matrix B to
be block-diagonalized.

The gen be code is separated into a number of stages:

Stage 0 Convert model-specific data to standard fields.
Stage 1 Remove time-domain mean from the fields.
Stage 2 Calculate regression coefficients and use them to define unbalanced control variables.
Stage 3 Calculate vertical error covariances for control variables (represented via decompo-

sition into eigenvectors/eigenvalues).
Stage 4 Calculate horizontal error correlations: lengthscales (in regional domains) and

power spectra (in global domains).

A detailed description of each stage of the control variable transform can be found in [3] and
[4]. The users have two main choices to define the background error covariance when running
the gen be utility, called CV3 and CV5. In CV3, the control variables are in physical space
while in CV5 they are in eigenvector space. Moreover, in CV3 a BE file (be.dat) is supplied
with the WRFDA source code, which is a global error covariance that can be used for any
regional domain. In CV5, on the other hand, BE is a domain-dependent error covariance,
which is generated through the gen be utility (using an empirical orthogonal function (EOF)
to represent the vertical covariance), based on forecast or ensemble data from the simulation
domain.

4.3 4DVar on WRFDA

The 4D-Var assimilation method as already mentioned, has a number of advantages over the
3D-Var scheme. It allows the observations to be assimilated at the time of their measure-
ment or in a specific time-window. Moreover, it implicitly defines flow-dependent forecast error
covariances and almost has the ability to use a forecast model as a constraint leading to an
improved analysis estimate. Given these advantages, 4D-Var was included in the capabilities
of the WRFDA system. The WRF 4DVar algorithm considers the incremental 4D-Var formu-
lation (refer to [6], [15], [22] and [34]), which is commonly used in operational systems. The
incremental 4D-Var approach is designed to find the analysis increment that minimizes a pre-
scribed cost function defined as a function of the analysis increment instead of the analysis itself.

The incremental 4D-Var procedure can be seen as a pair of nested iterations: the outer and
inner loops. In the outer loop, the high-resolution model is run and innovations are computed
with respect to the resulting high-resolution trajectory. Then, the inner loop uses a degraded
lower-resolution model with simplified physics, to perform most of the integrations required
by the minimization of the approximate functional. The resulting lower-resolution innovation
is then used to correct the initial conditions of the high-resolution model, which is integrated
once more, and the innovations are recomputed with respect to this updated trajectory. In this
formulation, the tangent linear and the adjoint models are used in the inner-loop minimization,
while the evolution of the background error is estimated with the full forward model. Designing
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the incremental 4D-Var, requires to decide how many outer loops will be performed and what
will be the configuration of the lower-resolution model used in the inner loop.

The WRF 4DVar functional is of the form

J = Jb + Jo + Jc, (4.4)

which includes quadratic measures of the distance to the background, observation and balanced
control. The background cost function term Jb is

Jb =
1

2
(xn − xb)TB−1(xn − xb)

=
1

2

[
(xn − xn−1) + (xn−1 − xb)

]T
B−1

[
(xn − xn−1) + (xn−1 − xb)

]
=

1

2

(xn − xn−1) +
n−1∑
i−1

(xi − xi−1)

T B−1

(xn − xn−1) +
n−1∑
i−1

(xi − xi−1)

 .
The background error covariance matrix B is typically a climatological estimate. However, it
may also be derived from prior or ensemble based flow-dependent estimates (using the gen be
utility) as seen in the previous section. The background xb is usually a short-range forecast
created by a previous analysis. The vector xi denotes an intermittent analysis after the i-th
outer loop with i = 1, . . . , n be the index of the iteration. The final analysis of WRF 4DVar is
obtained after the last outer loop denoted as xn.
The inner loop minimization starts from a guess vector, xn−1, which is the analysis vector from
the latest outer loop. In the first outer loop, the background xb is normally taken as the first
guess vector x0. Nevertheless, the background and guess vectors should not be mixed in the
incremental formulation, as they are the same only during the first outer loop.

The observation cost function Jo in (4.4), represents the quadratic measure of the distance be-
tween the analysis xn and the observations yk:

Jo =
1

2

K∑
k=1

{
Hk

[
Mk(x

n)
]
− yk

}T
R−1

{
Hk

[
Mk(x

n)
]
− yk

}
=

1

2

K∑
k=1

{
Hk

[
Mk(x

n − xn−1 + xn−1)
]
− yk

}T
R−1

{
Hk

[
Mk(x

n − xn−1 + xn−1)
]
− yk

}

≈ 1

2

K∑
k=1

{
Hk

[
Mk(x

n−1)
]

+ HkMk(x
n − xn−1)− yk

}T
×

R−1
{
Hk

[
Mk(x

n−1)
]

+ HkMk(x
n − xn−1)− yk

}
=

1

2

K∑
k=1

[
HkMk(x

n − xn−1)− dk

]T
R−1

[
HkMk(x

n − xn−1)− dk

]
.

A linear approximation of the operators has been made here. We have the observation operator
Hk and its tangent linear model Hk, as well as the model operator Mk and its tangent linear
approximation Mk, where k denotes the observation window. Moreover, dk = yk−HkMk(x

n−1)
is the innovation vector for k-th observation window and R is the observation error covariance
matrix.
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Finally, the balance cost function in (4.4) measures the distance between the analysis and a
balanced state. The use of unbalanced initial conditions often generates high-frequency oscilla-
tions with amplitudes larger than those observed in nature. To overcome this problem, a digital
filter is included in WRF 4DVar to remove these high-frequency waves in the analysis.

According to [12], the basic idea of using a digital filter for initialization is to calculate the
Fourier transform of the initial noisy forecast values in time domain and then, set the coefficients
of high-frequencies to zero. Finally, the filtered values can be obtained by taking the inverse
Fourier transform and use them as initial conditions for a new forecast starting at time 0. In
WRF 4DVar the digital filter in Jc has the form:

Jc =
1

2
γdf

MN/2(x
n − xn−1)−

N∑
i=0

fiMi(x
n − xn−1)

T ×
C−1

MN/2(x
n − xn−1)−

N∑
i=0

fiMi(x
n − xn−1)


=

1

2
γdf

 N∑
i=0

giMi(x
n − xn−1)

T C−1

 N∑
i=0

giMi(x
n − xn−1)

 .
Here γdf is the weight assigned to the Jc term, fi is the coefficient for the digital filter and gi is
the modified coefficient with

gi =

{
−fi, i 6= N/2,

1− fi, i = N/2,

where N is the total integration steps over the assimilation window (for more information about
the use of digital filters refer to [11], [12], [27] and [38]).
Furthermore, C is a diagonal matrix containing variances of wind, temperature and dry surface
pressure having default values (3m/s)2, (1K)2 and (10hPa)2, respectively.

As defined in (4.4), the full 4D-Var functional is composed as the sum of Jb, Jo and Jc. In
order to avoid the calculation of the full background term Jb and accelerate the minimization
algorithm, we define a control variable transform (similarly to the incremental 3D-Var case)

vn = U−1(xn − xn−1),

where U is defined as B = UUT . Applying this transformation to the 4D-Var cost function we
finally obtain its gradient J ′(vn) = ∇J(vn) with respect to the control variable vn, which is

J ′(vn) =

n−1∑
i=1

vi + vn

+ UT
K∑
k=1

MT
kHT

kR−1{HkMkUvn − dk}

+ UT
N∑
i=0

MT
i giγdfC

−1

 N∑
i=0

giMiUvn

 .

(4.5)

In the last expression, HT
k is the adjoint observation operator over the assimilation window k,

MT
k is the adjoint model, which propagates the analysis residuals {HkMkUvn − dk} and the
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digital filter forcing
∑N

i=0 fiMiUvn, backward in time. A 3D-Var solution can be obtained
by setting K = 1 and removing the model-related components. According to the theory, the
analysis state is obtained when the cost function (4.4) is minimized, or equivalently, when its
gradient in (4.5) is equal to zero. As described earlier, the cost function minimization is carried
out using the Conjugate Gradient method; the minimization takes place in the inner-loop of
the WRF 4DVar algorithm.

Given the background model state xb, the lateral boundary conditions WRFBDY valid during
the analysis time window, the background and the observation error covariance matrices B and
R, respectively, as well as the observations grouped into K time windows, WRF 4DVar will
produce the final analysis xn. The major software components of the WRF 4DVar system are
the following:

WRF The WRF ARW model is referred to as WRF NL (WRF full nonlinear model).
The ARW solves the compressible, non-hydrostatic Euler equations, cast in flux
form and conserving of both mass and scalar. The ARW model has a terrain
vertical coordinate and an Arakawa C-grid staggering in the horizontal. The
model uses the Runge-Kutta 2nd and 3rd order time integration schemes, and
second to sixth order advection options.

WRFPLUS This component comprises the WRF tangent linear model (WRF TL) and its
adjoint model (WRF AD). Both models are calculated based on a simplified
version of the full WRF model (WRF SN), which includes some simple physical
processes such as vertical diffusion and large-scale condensation.

VAR The VAR module contains all the components of WRF 3DVar extended to in-
clude four-dimensional enhancements such as grouping of the observations y into
yk and replacing H,H,HT by Hk,Hk and HT

k , respectively, in an observation
window k. This function calls the WRF NL, WRF TL and WRF AD models
and the grid/variable transform operators.

COM The aforementioned components are separate coded, therefore COM manages
the communication among them. Its implementation is hidden from the other
three components and allows the transmission of data either through disk I/O,
or through memory for maximum efficiency.
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Figure 4.2: Data flow and program structure of WRF 4DVar. Source: This diagram has been
taken from [15], which is the main reference used for the description of WRF 4DVar.

Figure 4.2 depicts the data flow and the structure of WRF 4DVar. The files used for the com-
munication between VAR, WRF and WRFPLUS are shown in the middle part of the diagram
and are described below:

WRFINPUT The full model state at the beginning of each outer loop, written out by
VAR and read in by WRF as an initial model state.

NL(1), . . . , NL(K) K model states (one for each observation window) produced by WRF and
read in VAR before computing the innovation vector dk.

BS(0), . . . , BS(N) Here N + 1 model states (one for each time step) produced by WRF, read
in by WRFPLUS as basic states.

TL00 The initial model state for the tangent linear model, written out by VAR
after the U transform and read in by WRFPLUS.

TL(1), . . . , TL(K) K tangent linear model states (one for each observation window) produced
by WRFPLUS during the tangent linear integration, read in VAR before
computing the adjoint forcing (AF), as defined below.

TLDF This files is responsible for the communication between the tangent linear
and adjoint models, separately coded in WRFPLUS. The digital filter forc-
ing

∑N
i=0 fiMiUvn computed by WRF TL at the end of the tangent linear

integration is then read in by WRF AD in the beginning of the adjoint
integration.

AF(K), . . . , AF(1) K files containing the adjoint forcings HT
kR−1{HkMkUvn − dk} (one for

each observation window k) are written by VAR and read in by WRFPLUS
during the adjoint integration.

AD00 The output of WRFPLUS after the adjoint integration, read in by VAR
before the UT transform.

As in the case of the WRF 3DVar assimilation, WRF 4DVar can also run both in cold-start
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and cycling modes. The advantage of WRF 4DVar analysis compared to the 3D-Var is its flow-
dependent structure in the increments, in contrast with 3DVar, which uses the static covariance
in the analysis and thus, the resulting increments correspond exactly to the structure of the
background error covariance.

4.4 Hybrid Variational-Ensemble

WRF 3DVar assimilation system assumes that the background error covariance is static and
nearly homogeneous and isotropic. In reality, the background error covariance depends on the
errors of the day. WRF 4DVar implicitly includes a time-involving background error covariance
through the evolution of initial errors introduced by the tangent linear dynamics. However, the
flow-dependent covariance may be limited due to the assumption of the static background error
covariance in the beginning of each 4D-Var assimilation cycle. It is possible to use ensemble
information in the variational data assimilation framework in order to improve the analysis
estimate.

Hamill and Snyder [13] suggested a Hybrid EnKF-3DVar scheme in which, the background error
covariance can be represented by a weighted sum of the static Bs and the ensemble covariance
Pe, i.e.,

Pb = (1− a)Pe + aBs,

where a is a tunable parameter between 0 (pure EnKF) and 1 (pure 3D-Var).
This strategy has been demonstrated on simple models, but for large NWP models it is diffi-
cult to implement. Lorenc in [23] discussed how an ensemble based covariance model could be
adapted conveniently to the variational framework by extending the control variables. The two
different methods, eventually, proved to be theoretically equivalent to each other in [37].

In WRFDA the Hybrid DA scheme is based on the existing 3D-Var system, following Lorenc’s
method. The ensemble mean is updated by the hybrid scheme using the extended control
variable to incorporate ensemble covariance information. The ensemble perturbations are gen-
erated by the Ensemble Transform Kalman filter (ETKF, for a detailed description refer to
[36]), which is less expensive than the EnKF since it updates the ensemble perturbations in the
low-dimensional ensemble subspace. Finally, this scheme is called as the hybrid ETKF-3DVAR
system of WRF.

Starting with an ensemble of K background forecasts at time t0, there are the following four
steps in each Hybrid ETKF-3DVAR assimilation cycle:

1. update the ensemble mean by the hybrid ensemble-3DVAR method,

2. update the forecast perturbations using ETKF,

3. add the updated ensemble perturbations to the updated mean to generate K initial en-
semble members,

4. make K forecasts starting from the K initial ensemble members forward to the next
analysis time.

The first two steps are essential for the efficient design of the hybrid method and are described
in the sequel. In the WRF hybrid ETKF-3DVAR, the flow-dependent ensemble covariances
are incorporated in the variational minimization by extending control variables. The analysis
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increment of the hybrid is a sum of two terms:

x′ = x′1 +
K∑
k=1

(ak ◦ xek), (4.6)

where x′1 is the increment associated with the WRF 3DVar static background covariance and
the sum corresponds to the increment associated with the flow-dependent ensemble covariance.
In this term, xek is the k-th normalized ensemble perturbation defined as xek = (xk−x)/

√
K − 1

where K is the ensemble size, xk is the k-th ensemble forecast and x is the forecast ensemble
mean. The vectors ak denote the extended control variances for each ensemble member and the
symbol “ ◦ ” denotes the Schur product (element by element) of the vectors ak and xek. The
coefficient ak fro each member determines the ensemble covariance localization scale.

The analysis increments x′ can be obtained by minimization of the hybrid cost function:

J(x′1,a) = β1J1 + β2Je + Jo

= β1
1

2
(x′1)

TB−1(x′1) + β2
1

2
(a)TA−1(a)

+
1

2
(yo′ −Hx′)TR−1(yo′ −Hx′) (4.7)

Comparing (4.7) to the original WRF 3DVAR cost function, the usual background term has
been replaced a weighted sum of J1 and Je. The term J1 is the WRF 3DVAR background
term associated with the static background error covariance B. In the term Je, a is formed as
aT = (aT1 ,a

T
2 , . . . ,a

T
K) and is constrained by the block-diagonal (spatial) covariance matrix A,

defined as

A =


S

S
. . .

S

 ,
where each block S is the prescribed correlation matrix that constrains the spatial variation of
ak. Moreover, Jo is the observation term, in which yo′ = yo −H(xb) is the innovation vector,
where in the ETKF case the background forecast xb is the ensemble mean forecast.
Moreover, in (4.7), β1 and β2 are the weights assigned to the static and the ensemble covari-
ances, respectively. In order to conserve the total background-error variance, the weights are
constrained by

1

β1
+

1

β2
= 1.

In [37] it is proved that the solution of the minimization of the cost function (4.7) is equiv-
alent to the solution obtained by the minimization of a cost function where the background
error covariance is explicitly defined as a sum of the static and the ensemble covariances with
localization applied through the Schur product:

J(x′1,a) =
1

2
x′
T
(

1

β1
B +

1

β2
Pe ◦ S

)−1
x′ +

1

2
(yo′ −Hx′)TR−1(yo′ −Hx′), (4.8)

with Pe be the ensemble covariance matrix defined as

Pe =

K∑
k=1

xekx
e
k
T .
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Given the covariance E
{

aka
T
k

}
= S for k = 1, . . . ,K, the covariance of the sum in (4.6)

satisfies

E


K∑
k=1

(ak ◦ xek)

 K∑
k=1

(ak ◦ xek)

T
 = Pe ◦ S.

Similarly to the WRF 3DVAR formulation, the terms J1 and Je, which correspond to the
background, are preconditioned in order to accelerate the minimization:

J1 is preconditioned by a control variable transform U1, relating the control variables v1

and the model space increments x′1, that is, x′1 = U1v1, where U1 approximates the
square root of the static covariance B, i.e., U1 ≈ B1/2.

Je is preconditioned by a transform a = U2v2, where U2 approximates the square root of
the correlation matrix A, i.e., U2 ≈ A1/2.

U1 here is the same as in the WRF 3DVAR, while U2 approximates the square root of the
correlation matrix A and is modeled using the simple horizontal recursive filter provided in the
WRF hybrid DA system (described in detail in [3]).

Having updated the ensemble mean by the hybrid ensemble-3DVAr, the next part is to generate
ensemble perturbations around the updated mean state. The ETKF is used to update the
forecast ensemble perturbations in order to produce the analysis perturbations. Consider Xe to
be the matrix whose columns contain the K ensemble member perturbations from the mean,
and let Xa denote the analysis perturbations matrix. The ETKF updates Xe into Xa using a
transformation matrix, which is derived within the ensemble perturbation subspace. The ETKF
is formulated as:

Xa = ΠXeC(ρΓ + I)−1/2CT , (4.9)

where I the identity matrix and C contains the eigenvectors and Γ the eigenvalues of the K×K
matrix

1

K − 1
(Xe)THTR−1HXe.

In (4.9), Π is an inflation factor and ρ is a scalar accounting for the fraction of the forecast error
variance projected onto the ensemble subspace. These factors should be adaptively estimated
for each data assimilation cycle using the innovation statistics.

In conclusion, the aim is to ensure that, on average, the background error variance estimate
from the spread of ensembles about the ensemble mean is consistent with the background error
variance estimated from the differences between the ensemble mean and the observations, i.e.,{

R1/2[y −H(x)]
}T {

R1/2[y −H(x)]
}

≈ tr

 K∑
k=1

{
R−1/2[H(xk)−H(x)]

}
×
{

R−1/2[H(xk)−H(x)]
}T

/(K − 1) + I

 ,

where tr(·) denotes the trace of a matrix. Details on the derivation of the last equation can be
found in [37].

The Hybrid Variational-Ensemble data assimilation combines the advantages of traditional vari-
ational and ensemble approaches in order to produce an analysis that is superior to that pro-
duced by each one of the pure 3D-Var and Ensemble schemes.
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Chapter 5

Appendix

5.1 3D-Var for the Lorenz-96 model

In this section, 3D-Var experiments are presented, assuming a perfect model and two different
observation networks. Each one of them was tested for observational error εo ∼ N(0, σ2o), where
σo = 0.50.

In each case, we have two different types of figures. In the first type of figure we present the
evolution in time of the first four components of the true state, the analysis state and the avail-
able observations.

In the second type of figure, we have three elements: In the upper left corner, we present the
analysis state compared to the true state, as well as the observation locations. In the upper
right corner, we have the absolute value of the analysis error plotted against the locations at
which we have observations. Finally, in the lower part, we present the evolution in time of the
analysis RMSE.

5.1.1 Using the matrix B6h1

Initially, we assume that B6h1 is the constant background error covariance matrix and we
present the cases shown in the following table.

Analysis RMSE for 3D-Var using B6h1

Network
Assimilation:

each time step every 5 time steps

1. observe all 4.4403 5.1105

2. observe every 2 4.3193 4.8730

Table 5.1: 3D-Var analysis RMSE results using B6h1 matrix and assuming εo ∼ N(0, σ2o) with
σo = 0.50.

In the first example, we consider the first observation network, for observations which are
assimilated into our system at each integration step. In Figure 5.1 we present the evolution in
time of the first four components of the true state (green line), the analysis estimate (dashed
black line), as well as the available observations (red dots).
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Figure 5.1: 3D-Var for the Lorenz-96 model with observation network 1, σo = 0.50 and assimi-
lation performed at each time step.

For observational errors with standard deviation σo = 0.50, the analysis “captures” the general
pattern of the true state but there is no good quality in the estimate.
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Figure 5.2: 3D-Var for the Lorenz-96 model with observation network 1 and σo = 0.50. The
average analysis RMSE is 4.4403.

Figures 5.3 and 5.4 are for the second observation network. The analysis is trying to fit the
true state in the observed components, but still the RMSE of the estimate is quite big.
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Figure 5.3: 3D-Var for the Lorenz-96 model with observation network 2, σo = 0.50 and assimi-
lation performed at each time step.
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Figure 5.4: 3D-Var for the Lorenz-96 model with observation network 2 and σo = 0.50. The
average analysis RMSE is 4.3193.
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We consider now that observations are assimilated into our system every 5 integration steps. In
Figures 5.5 and 5.6 we have the results for the first observation network, while in Figures 5.7
and 5.8 the results for the second network. In both cases, the analysis produced is not close to
the true state, causing high analysis RMSE.
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Figure 5.5: 3D-Var for the Lorenz-96 model with observation network 1, σo = 0.50 and assimi-
lation performed every 5 integration steps.
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Figure 5.6: 3D-Var for the Lorenz-96 model with observation network 1 and σo = 0.50. The
average analysis RMSE is 5.1105.
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Figure 5.7: 3D-Var for the Lorenz-96 model with observation network 2, σo = 0.50 and assimi-
lation performed every 5 integration steps.
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Figure 5.8: 3D-Var for the Lorenz-96 model with observation network 2 and σo = 0.50. The
average analysis RMSE is 4.8730.

5.1.2 Using the matrix Bloc

We assume now that Bloc is the background error covariance matrix. The results presenting in
the sequel are summarized in the following table.

Analysis RMSE for 3D-Var using Bloc

Network
Assimilation:

each time step every 5 time steps

1. observe all 1.6891 3.9178

2. observe every 2 3.3563 4.4278
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Table 5.2: 3D-Var analysis RMSE results using Bloc matrix and assuming εo ∼ N(0, σ2o) with
σo = 0.50.

In Figures 5.9 and 5.10, where observations are available at each location and we have used
the localized background error covariance, 3D-Var gives a pretty small RMSE and the analysis
estimate is very close to the true state.
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Figure 5.9: 3D-Var for the Lorenz-96 model with observation network 1, σo = 0.50 and assimi-
lation performed at each time step.
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Figure 5.10: 3D-Var for the Lorenz-96 model with observation network 1 and σo = 0.50. The
average analysis RMSE is 1.6891.
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We continue with the results for the second observation network, in Figures 5.11 and 5.12. The
analysis is a relatively good estimate of the true state at the observed components (except the
first time steps), while at the unobserved components we see that is also close to the truth in
some points.
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Figure 5.11: 3D-Var for the Lorenz-96 model with observation network 2, σo = 0.50 and assim-
ilation performed at each time step.
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Figure 5.12: 3D-Var for the Lorenz-96 model with observation network 2 and σo = 0.50. The
average analysis RMSE is 3.3563.
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Assuming now that observations are assimilated into our system every 5 integration steps for
the first observation network, we have the results in Figures 5.13 and 5.14.
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Figure 5.13: 3D-Var for the Lorenz-96 model with observation network 1, σo = 0.50 and assim-
ilation performed every 5 integration steps.
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Figure 5.14: 3D-Var for the Lorenz-96 model with observation network 1 and σo = 0.50. The
average analysis RMSE is 3.9178.
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Considering now the second observation network for assimilation every 5 integration steps, we
present the results in Figures 5.15 and 5.16.
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Figure 5.15: 3D-Var for the Lorenz-96 model with observation network 2, σo = 0.50 and assim-
ilation performed every 5 integration steps.
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Figure 5.16: 3D-Var for the Lorenz-96 model with observation network 2 and σo = 0.50. The
average analysis RMSE is 4.4278.
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5.2 EnSRF for the Lorenz-96 model

We present additional results of the EnSRF for the Lorenz-96, considering the same cases as in
section 3.2.1 for an observational error εo ∼ N(0, σ2o), for a standard deviation σo = 0.50.

5.2.1 Case study I

Considering an ensemble of 10 members and observations at each site, which become available
every 50 time-steps having an observation error εo ∼ N(0, σ2o). In Figure 5.17 we present the
time evolution of the first four components of the true state, the ensemble members and their
mean, as well as the available observations. Then, in Figure 5.18 we present the RMSE of the
analysis estimate as a function of time.
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Figure 5.17: EnSRF for the Lorenz-96 with K = 10, observation network 1 and σo = 0.50.
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Figure 5.18: EnSRF analysis RMSE results for K = 10, observation network 1 and σo = 0.50.
The mean value of the RMSE is 3.8939.
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The same test-case for an ensemble of 40 members gives the results presented in Figures 5.19
and 5.20.
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Figure 5.19: EnSRF for the Lorenz-96 with K = 40, observation network 1 and σo = 0.50.
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Figure 5.20: EnSRF analysis RMSE results for K = 40, observation network 1 and σo = 0.50.
The mean value of the RMSE is 2.2899.

It is obvious that for an ensemble with a greater size we obtain a better analysis estimate and
therefore, a smaller analysis error.
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If we use covariance inflation (both multiplicative and additive) with parameters γ = 1.2 and
` = 0.05 we get the results showing at Figures 5.21 and 5.18.
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Figure 5.21: EnSRF for the Lorenz-96 with K = 40, observation network 1, σo = 0.50, inflation
factors γ = 1.2 and ` = 0.05.
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Figure 5.22: EnSRF analysis RMSE results for K = 40, observation network 1 and σo = 0.50.
The mean value of the RMSE is 2.2923.

Comparing the Figures 5.20 and 5.22, we obtain that the ensemble mean is a better estimate
of the true state when covariance inflation is applied, causing the RMSE to be reduced from
2.6365 to 2.0629.

5.2.2 Case study II

In the previous examples, we assumed that both the true and the ensemble are propagating in
time through the same model dynamics, i.e., we assumed a perfect forecast model. In general
this is not the case, so we are going to assume now that the forecast model is slightly different
from the true. We assume that the true model has a forcing term F = 8, while the forecast
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model has F = 8.2. Considering an ensemble of 40 members and observations available at each
location with σo = 0.50, we compare the results obtained with and without the use of inflation.
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Figure 5.23: EnSRF for the Lorenz-96 with K = 40, observation network 1, σo = 0.50 and
forecast model with forcing term F = 8.2.

0 50 100 150 200
−15

−10

−5

0

5

10

15

20

Evolution in time

x1

 

 
xt

yo

xens
Xens

0 50 100 150 200
−15

−10

−5

0

5

10

15

20

Evolution in time

x2

0 50 100 150 200
−15

−10

−5

0

5

10

15

20

Evolution in time

x3

0 50 100 150 200
−20

−10

0

10

20

Evolution in time

x4

Figure 5.24: EnSRF for the Lorenz-96 with K = 40, observation network 1, σo = 0.50, assuming
a forecast model with forcing term F = 8.2 and inflation factors γ = 1.2 and ` = 0.05.
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Figure 5.25: EnSRF analysis RMSE results for K = 40, observation network 1, σo = 0.50,
assuming a forecast model with forcing term F = 8.2. In the left plot we do not use inflation,
while in the right plot the inflation factors are γ = 1.2 and ` = 0.05.

In the presence of covariance inflation, the RMSE appears to have smaller peaks between the
assimilations, resulting an error reduction from 2.5574 (no inflation) to 2.2674 (inflation).

5.2.3 Case study III

We consider now an example using an ensemble of 40 members but now we assume that the
observations become available at every two sites and therefore, we expect that the analysis
estimate will be less accurate on the unobserved variables.
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Figure 5.26: EnSRF for the Lorenz-96 with K = 40, observation network 2 and σo = 0.50.

In Figure 5.26, we observe that after the assimilation of each observation, the ensemble does not
concentrate around the true state. This is due to the fact that the observations are available
only on half of the sites. For the unobserved sites, their evolution in time depends only on the
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model dynamics and thus, their behavior is almost chaotic. In Figure 5.27 we have the evolution
in time of an observed and an unobserved component of the model state. As can be seen, the
ensemble mean is not a good estimate of the true state, since there is less information available.
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Figure 5.27: EnSRF for the Lorenz-96 with K = 40, observation network 2 and σo = 0.50.
Evolution in time of the 13th and 26th components, which are observed and unobserved respec-
tively.

The RMSE of the estimate is plotted against time in the figure below. The error’s behavior is
quite different from the previous test case (Figure 5.25), in which, after each observation was
assimilated there was a significant error reduction.
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Figure 5.28: EnSRF analysis RMSE results for K = 40, observation network 2 and σo = 0.50.
The mean value of the RMSE is 3.2518.
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